1
|
Ji W, Wang Y, Zhao B, Liu J. Identifying high-risk volatile organic compounds in residences of Chinese megacities: A comprehensive health-risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135630. [PMID: 39216248 DOI: 10.1016/j.jhazmat.2024.135630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Indoor volatile organic compounds (VOCs) pose considerable health hazards. However, research on hazardous VOCs in Chinese residences has been conducted on a limited spectrum. This study used Monte Carlo simulations with data from Beijing, Shanghai, and Shenzhen to assess VOC health risks in Chinese homes. We identified high-risk VOCs and analyzed the impact of geographic location, age group, activity duration, and inhalation rate on VOC exposure, including lifetime risks. Formaldehyde, acrolein, naphthalene, and benzene posed the highest risks. Notably, acrolein made the leading contribution to non-cancer risks across all megacities. Naphthalene had elevated cancer and non-cancer risks in Shenzhen. This study highlights the need to investigate acrolein and naphthalene, which are currently unregulated but pose substantial health risks. The cumulative cancer risk (TCR) decreases from adults to children, while the cumulative non-cancer risk (HI) is higher for children. In all cities, the average TCR for adults exceeds the tolerable threshold of 10-4, and the average HI values surpass the safety threshold of 1. Nearly 100 % of the population faces a lifetime cancer risk above 10-4, and over 71 % face a non-cancer risk exceeding 10 (tenfold the benchmark). This study underscores the critical need for developing control strategies tailored to VOCs.
Collapse
Affiliation(s)
- Wenjing Ji
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Yanting Wang
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Jing Liu
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
Lv Z, Liu X, Bai H, Nie L, Li G. Process-specific volatile organic compounds emission characteristics, environmental impact and health risk assessments of the petrochemical industry in the Beijing-Tianjin-Hebei region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3938-3950. [PMID: 38095794 DOI: 10.1007/s11356-023-31351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Volatile organic compounds (VOCs) concentration, source profiles, O3 and SOA formation, and health risks were investigated in the petrochemical industry in Beijing-Tianjin-Hebei. The results showed that total VOCs concentrations were 547.1-1956.5 μg·m-3, and alkanes were the most abundant group in all processes (31.4%-54.6%), followed by alkenes (20.6%-29.2%) and aromatics (10.1%-25.1%). Moreover, ethylene (11.3%), iso-pentane (7.1%), n-hexane (5.1%), benzene (4.9%) and 2,2-dimethylbutae (4.8%) were identified as the top five species released for the whole petrochemical industry. The coefficient of divergence between the source profiles from different processes was 0.49-0.73, indicating that most source profiles must not be similar. Moreover, because of the different raw materials and technologies used, the source profiles in this study are significantly different from those of other regions. The ozone and secondary organic aerosol formation potentials (OFPs and SOAPs) were evaluated, suggesting that ethylene, propylene, 1-butene, m,p-xylene, and 1,3-butadiene should be preferentially controlled to reduce OFPs. That benzene, toluene, ethylbenzene, m,p-xylene, isopropylbenzene, o-ethyltoluene, and 1,3,5-trimethylbenzene should be priority control compounds for SOAPs. Additionally, the total hazard ratio for non-cancer risk ranged from 0.9 to 7.7, and only living area was unlikely to be related to adverse health effects. Cancer risks associated with organic chemicals, rubber synthesis, oil refining, and wastewater collection and treatment have definite risks, whereas other processes have probable risks. This study provides a scientific basis for VOCs emission control and management and guides human health in the petrochemical industry.
Collapse
Affiliation(s)
- Zhe Lv
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing, 100037, China
| | - Xiaoyu Liu
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing, 100037, China
| | - Huahua Bai
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing, 100037, China
| | - Lei Nie
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing, 100037, China
| | - Guohao Li
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.
- Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Beijing, 100037, China.
| |
Collapse
|
3
|
Gu Y, Liu B, Meng H, Song S, Dai Q, Shi L, Feng Y, Hopke PK. Source apportionment of consumed volatile organic compounds in the atmosphere. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132138. [PMID: 37531767 DOI: 10.1016/j.jhazmat.2023.132138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
Conventional source apportionments of ambient volatile organic compounds (VOCs) have been based on observed and initial concentrations after photochemical correction. However, these results have not been related to ozone (O3) and secondary organic aerosol (SOA) formation. Thus, the apportioned contributions could not effectively support secondary pollution control development. Source apportionment of the VOCs consumed in forming O3 and SOA is needed. A consumed VOC source apportionment approach was developed and applied to hourly speciated VOCs data from June to August 2022 measured in Laoshan, Qingdao. Biogenic emissions (56.3%), vehicle emissions (17.2%), and gasoline evaporation (9.37%) were the main sources of consumed VOCs. High consumed VOCs from biogenic emissions mainly occurred during transport from parks to the southwest and northwest of study site. During the O3 pollution period, biogenic emissions (46.3%), vehicle emissions (24.2%), and gasoline evaporation (14.3%) provided the largest contributions to the consumed VOCs. However, biogenic emissions contribution increased to 57.1% during the non-O3 pollution period, and vehicle emissions and gasoline evaporation decreased to 16.5% and 9.01%, respectively. Biogenic emissions and the mixed source of combustion sources and solvent use contributed the most to O3 and SOA formation potentials during the O3 pollution period, respectively.
Collapse
Affiliation(s)
- Yao Gu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| | - He Meng
- Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Shaojie Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Laiyuan Shi
- Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao 266003, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
4
|
Wang B, Li S, Sun D, Bian J, Zhao H, Li H, Zhang Y, Ju F, Ling H. Emission characteristics of benzene series in FCC flue gas. CHEMOSPHERE 2023; 328:138561. [PMID: 37004824 DOI: 10.1016/j.chemosphere.2023.138561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Benzene series are considered as air pollutants in refineries. However, the emissions of benzene series in fluid catalytic cracking (FCC) flue gas are poorly understand. In this work, we conduct stack tests on three typical FCC units. Benzene series, including benzene, toluene, xylene and ethyl benzene, are monitored in the flue gas. It shows that the coking degree of the spent catalysts affect the emissions of benzene series significantly, and there are four kinds of carbon-containing precursors in the spent catalyst. A fixed-bed reactor is used to conduct the regeneration simulation experiments, and the flue gas is monitored by TG-MS and FTIR. The emissions of toluene and ethyl benzene are mainly emitted in the early and middle stage of the reaction (250-650 °C), while the emission of benzene is mainly detected in the middle and late stage of the reaction (450-750 °C). Xylene group is not detected in the stack tests and regeneration experiments. Higher emissions of benzene series are released from the spent catalyst with lower C/H ratio during regeneration process. With the increase of oxygen content, the emissions of benzene series decrease, and the initial emission temperature is advanced. These insights can improve the refinery's awareness and control of benzene series in the future.
Collapse
Affiliation(s)
- Bohan Wang
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, China; School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Sen Li
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, China
| | - DongXu Sun
- Digital&IT Management Department, China National Petroleum Corporation, Beijing, China
| | - Jiawei Bian
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Hai Zhao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Hong Li
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, China
| | - Yang Zhang
- Shanghai Research Institute of Chemical Industry CO., LTD, Shanghai, China
| | - Feng Ju
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China.
| | - Hao Ling
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Khajeh Hoseini L, Jalilzadeh Yengejeh R, Mohammadi Rouzbehani M, Sabzalipour S. Health risk assessment of volatile organic compounds (VOCs) in a refinery in the southwest of Iran using SQRA method. Front Public Health 2022; 10:978354. [PMID: 36176512 PMCID: PMC9514116 DOI: 10.3389/fpubh.2022.978354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023] Open
Abstract
Oil industries, such as oil refineries, are important sources of volatile organic compound production. These compounds have significant health effects on human health. In this study, a health risk assessment is carried out on volatile organic compounds (VOCs) in the recovery oil plant (ROP) unit of a refinery in southwest Iran. It was performed using the SQRA method including respiratory risk for chronic daily intake (CDI) of VOCs and cancer risk and non-cancer risk indices. Five locations in the area of oil effluents and five locations in the refinery area (control samples) were considered for evaluation. The sampling was done according to the standard NIOSH-1501 and SKC pumps. The gas chromatography/flame ionization detector (GC/FID) method was used to extract VOCs. The cancer slope factor (CSF) and respiratory reference dose (RFC) were calculated in addition to the respiratory risk (CDI). The end result shows that a significant difference was observed between the concentrations of volatile organic compounds in the two groups of air (P < 0.05). The SQRA risk assessment showed that the risk levels of benzene for workers in the pit area were very high (4-5). Health hazard levels were also evaluated as high levels for toluene (2-4) and moderate levels for xylene and paraxylene (1-3). The cancer risk assessment of volatile organic compounds recorded the highest level of cancer risk for benzene in the range of petroleum effluents (>1). Also, a non-cancer risk (HQ) assessment revealed that benzene had a significant health risk in the range of oil pits (2-3). Based on the results, petroleum industries, including refineries, should conduct health risk assessment studies of volatile organic compounds. The units that are directly related to the high level of VOCs should be considered sensitive groups, and their employees should be under special management to reduce the level of exposure to these compounds and other hazardous compounds.
Collapse
Affiliation(s)
| | - Reza Jalilzadeh Yengejeh
- Department of Environmental Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran,*Correspondence: Reza Jalilzadeh Yengejeh
| | | | - Sima Sabzalipour
- Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|