1
|
Junior GRC, Lima ADF, Cavalcante RM. Crab urine as biomonitoring tools for pollution: A state-of-the-art review of methods, organic contaminant levels, and comparisons between spilled and unspilled areas. MARINE POLLUTION BULLETIN 2024; 211:117443. [PMID: 39721177 DOI: 10.1016/j.marpolbul.2024.117443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024]
Abstract
This study constitutes a systematic review endeavoring to elucidate the methodologies pertinent to the extraction and analysis of organic contaminants, specifically focusing on crab urine. Although research is limited, crabs serve as invaluable bioindicators and biomonitors due to their unique habitat in sediment-rich areas where aquatic contaminants commonly accumulate. Despite the well-documented harmful effects of substances like PCBs, OCPs, PBDEs, and pesticides on the nervous and endocrine systems, our review found that existing studies have predominantly focused on PAHs such as pyrene, benzo(a)pyrene, and naphthalene oi spilled and unspilled areas. One reason for this research gap is the misconception that collecting crab urine is challenging, a notion perpetuated by the lack of detailed methodologies in the literature. The research gap hinders comparing contamination levels and trends. Limited, infrequent studies highlight the urgent need for comprehensive investigations to enhance understanding of ecological impacts and improve environmental monitoring.
Collapse
Affiliation(s)
- Gladston R C Junior
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081 Fortaleza, CE, Brazil; Programa de Pós-graduação em Ciências Naturais/Ceará State University (PPGCN/UECE), Brazil
| | - Antônia D F Lima
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081 Fortaleza, CE, Brazil; Tropical Marine Sciences Program (PPGCMT/LABOMAR/UFC), Brazil
| | - Rivelino M Cavalcante
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081 Fortaleza, CE, Brazil; Tropical Marine Sciences Program (PPGCMT/LABOMAR/UFC), Brazil; Programa de Pós-graduação em Ciências Naturais/Ceará State University (PPGCN/UECE), Brazil.
| |
Collapse
|
2
|
Mello LC, Costa AB, de Moraes ASB, Lima ADF, Santos RP, Silva VAD, Abessa DMS, Cavalcante RM. Assessment of cancer and dietary risks in commercially valuable marine organisms in coast of a region of future exploration (Equatorial South Atlantic). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121991. [PMID: 39094409 DOI: 10.1016/j.jenvman.2024.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
The Equatorial South Atlantic region, spanning over 1700 km, is currently undergoing extensive exploitation through various activities such as oil extraction, desalination plants, marine mineral explorations, and wind power for green hydrogen production. This undoubtedly also contributes to the exacerbation of pre-existing chronic environmental impacts. This study aims to investigate the concentrations of 60 substances, categorized as Persistent Organic Pollutants (POPs) and Contaminants of Emerging Concern (CECs) from various classes including: polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), as well as Pyrethroids (PPs), Triazines (TPs) and Organophosphates (OPPs) pesticides in consumable fish, shellfish, and crabs. The bivalve (Mytella charruana), crab (Ucides cordatus), and catfish (Sciades herzbergii) samples were collected in areas of ecological, environmental and economic importance. This data was used to estimate concentrations in the organisms, and to calculate cancer and human health risk. The most prevalent pollutant classes in the organisms were OCPs, followed by TPs and PPs. Shellfish and fish samples had more compounds indicating health risks, when compared to crabs. The substances causing cancer risks varied across organisms and study areas. The heightened cancer risks linked to specific compounds in various species highlight the urgent need to address persistent pollutants to prevent long-term health impacts on both humans and wildlife. Compounds such as PPs, TPs, and OPPs pose significant risks of neurotoxicity and endocrine disruption. This study underscores the interconnectedness of environmental and human health in coastal ecosystems, calling for continuous monitoring and adaptive management strategies to protect these fragile environments and the communities that rely on them.
Collapse
Affiliation(s)
- Luiza C Mello
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil; UNESP, Universidade Estadual Júlio de Mesquita Filho, IB-CLP, São Vicente, Praça Infante Dom Henrique, s/n - Parque Bitaru, 11330-900, São Paulo, Brazil
| | - Ana B Costa
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Chemical Program, Chemistry Department -Federal University of Ceará UFC (PPGQ/DQ/UFC), Brazil
| | - Alessandra S B de Moraes
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Chemical Program, Chemistry Department -Federal University of Ceará UFC (PPGQ/DQ/UFC), Brazil
| | - Antonia D F Lima
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil
| | - Rafael P Santos
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil
| | - Viviane A da Silva
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; National Institute of Science and Technology in Tropical Marine Environments (INCT-AmbTropic, Phase II - Oil Spill), Brazil
| | - Denis M S Abessa
- Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil; UNESP, Universidade Estadual Júlio de Mesquita Filho, IB-CLP, São Vicente, Praça Infante Dom Henrique, s/n - Parque Bitaru, 11330-900, São Paulo, Brazil
| | - Rivelino M Cavalcante
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil; National Institute of Science and Technology in Tropical Marine Environments (INCT-AmbTropic, Phase II - Oil Spill), Brazil; Chemical Program, Chemistry Department -Federal University of Ceará UFC (PPGQ/DQ/UFC), Brazil.
| |
Collapse
|
3
|
Arisekar U, Shakila RJ, Shalini R, Sivaraman B, Karthy A, Al-Ansari MM, Dahmash Al-Dahmash N, Mythili R, Kim W, Ramkumar S, Kalidass B, Sangma SN. Diffusion of organochlorine (OCPs) and cypermethrin pesticides from rohu (Labeo rohita) internal organs to edible tissues during ice storage: a threat to human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:126. [PMID: 38483641 DOI: 10.1007/s10653-024-01891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/27/2024] [Indexed: 03/19/2024]
Abstract
The migration of organochlorine pesticides (OCPs) and cypermethrin residues from internal organs to edible tissues of ice-held Labeo rohita (rohu) was investigated in this study. The liver (246 µg/kg) had the highest level of ∑OCP residues, followed by the gills (226 µg/kg), intestine (167 µg/kg), and muscle tissue (54 µg/kg). The predominant OCPs in the liver and gut were endosulfan (53-66 µg/kg), endrin (45-53 µg/kg), and dichloro-diphenyl-trichloroethane (DDT; 26-35 µg/kg). The ∑OCP residues in muscle increased to 152 µg/kg when the entire rohu was stored in ice, but they decreased to 129 µg/kg in gill tissues. On days 5 and 9, the total OCPs in the liver increased to 317 µg/kg and 933 µg/kg, respectively. Beyond day 5 of storage, total internal organ disintegration had led to an abnormal increase in OCP residues of liver-like mass. Despite a threefold increase in overall OCP residues by day 9, accumulation of benzene hexachloride (BHC) and heptachlor was sixfold, endrin and DDT were fourfold, aldrin was threefold, and endosulfan and cypermethrin were both twofold. Endosulfan, DDT, endrin, and heptachlor were similarly lost in the gills at a rate of 40%, while aldrin and BHC were also lost at 60 and 30%, respectively. The accumulation of OCP residues in tissues has been attributed to particular types of fatty acid derivatives. The study concluded that while pesticide diffusion to edible tissues can occur during ice storage, the levels observed were well below the allowable limit for endosulfan, endrin, and DDT.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, Tamil Nadu, 628008, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, Tamil Nadu, 628008, India
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, Tamil Nadu, 628008, India.
| | - Balasubramanian Sivaraman
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, Tamil Nadu, 628008, India
| | - Arjunan Karthy
- Department of Fishing Technology and Fisheries Engineering, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, Tamil Nadu, 628008, India
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Sugumar Ramkumar
- ICAR-Central Marine Fisheries Research Institute, Mumbai, Maharashtra, 400061, India
| | | | - Shannon N Sangma
- ICAR-Indian Agricultural Research Institute, Hazaribagh, Jharkhand, 825405, India
| |
Collapse
|
4
|
Doménech E, Martorell S. Review of the Terminology, Approaches, and Formulations Used in the Guidelines on Quantitative Risk Assessment of Chemical Hazards in Food. Foods 2024; 13:714. [PMID: 38472827 PMCID: PMC10931373 DOI: 10.3390/foods13050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This paper reviews the published terminology, mathematical models, and the possible approaches used to characterise the risk of foodborne chemical hazards, particularly pesticides, metals, mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons (PAHs). The results confirmed the wide variability of the nomenclature used, e.g., 28 different ways of referencing exposure, 13 of cancer risk, or 9 of slope factor. On the other hand, a total of 16 equations were identified to formulate all the risk characterisation parameters of interest. Therefore, the present study proposes a terminology and formulation for some risk characterisation parameters based on the guidelines of international organisations and the literature review. The mathematical model used for non-genotoxic hazards is a ratio in all cases. However, the authors used the probability of cancer or different ratios, such as the margin of exposure (MOE) for genotoxic hazards. For each effect studied per hazard, the non-genotoxic effect was mostly studied in pesticides (79.73%), the genotoxic effect was mostly studied in PAHs (71.15%), and both effects were mainly studied in metals (59.4%). The authors of the works reviewed generally opted for a deterministic approach, although most of those who assessed the risk for mycotoxins or the ratio and risk for acrylamide used the probabilistic approach.
Collapse
Affiliation(s)
- Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sebastián Martorell
- MEDASEGI Research Group, Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
5
|
Arisekar U, Shalini R, Sundhar S, R Sangma S, Bharathi Rathinam R, Albeshr MF, Alrefaei AF, Chanikya Naidu B, Kanagaraja A, M D S, J SP. De-novo exposure assessment of heavy metals in commercially important fresh and dried seafood: Safe for human consumption. ENVIRONMENTAL RESEARCH 2023; 235:116672. [PMID: 37453502 DOI: 10.1016/j.envres.2023.116672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The heavy metals (HMs) in seafood are alarming due to their biomagnification in the food chain. The concentrations of As, Cd, Hg, Pb, Cr, and Ni in both fresh and dried fish were quantified, and the potential exposure and safe intake levels for human consumption were assessed by the European Commission (EC) and the Food Safety Standard Authority of India (FSSAI). HMs concentrations ranged from 0.003 mg/kg (Cr) to 2.08 mg/kg for (As) and 0.007 mg/kg (Hg) to 2.76 mg/kg (As). Cd, Hg, and Pb levels in fresh and dried fish were below the maximum residue limits (MRLs) set by the EC and FSSAI, which were 0.1 mg/kg, 0.5 mg/kg, and 0.3 mg/kg, respectively. Cr and As concentrations were also below the MRLs of 12 mg/kg and 76 mg/kg for aquatic products specified by FSSAI. The concentration of HMs in fresh and dried fish was found in the order of As > Cr > Ni > Pb > Cd > Hg and As > Cd > Cr > Ni > Pb > Hg, while the fresh and dried fishes contained HMs in the following order: E. areolatus > S. longiceps > L.lentjen > S. barracuda > E. affinis > S. javus and DA > DS > DR > DB > DSF. The metal pollution index (MPI) validates seafood is HMs free, while the single (Pi) and Nemerow integrated pollution index (Pnw) indicate that concentrations of Cd and As in fresh and dried fish have exceeded the threshold value. The target hazard quotient (THQ<1), hazard index (HI < 1), and target cancer risk (TCR<10-4) indicate that there are no non-carcinogenic and carcinogenic risks through the consumption of seafood and seafood products collected from the Tuticorin coast and marketed at the domestic and international levels. The preliminary findings emphasize the importance of formulating domestic legislation/government initiatives to promote seafood and its consumption. The attainment of this objective shall be facilitated by examining the levels of persistent organic pollutants (POPs) in seafood and evaluating its potential risk to consumers.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | - Shanmugam Sundhar
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| | - Shannon R Sangma
- ICAR-Indian Agricultural Research Institute, Hazaribagh, 825405, Jharkhand, India
| | | | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | | | - Anantharaja Kanagaraja
- Regional Research Centre of ICAR - Central Institute of Freshwater Aquaculture, Bengaluru, 560089, Karnataka, India
| | - Sahana M D
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Saranya Packialakshmi J
- Department of Food and Nutrition, Kyung Hee University (KHU), 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, South Korea
| |
Collapse
|
6
|
Cui K, Guan S, Liang J, Fang L, Ding R, Wang J, Li T, Dong Z, Wu X, Zheng Y. Dissipation, Metabolism, Accumulation, Processing and Risk Assessment of Fluopyram and Trifloxystrobin in Cucumbers and Cowpeas from Cultivation to Consumption. Foods 2023; 12:foods12102082. [PMID: 37238900 DOI: 10.3390/foods12102082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Fluopyram and trifloxystrobin are widely used for controlling various plant diseases in cucumbers and cowpeas. However, data on residue behaviors in plant cultivation and food processing are currently lacking. Our results showed that cowpeas had higher fluopyram and trifloxystrobin residues (16.48-247.65 μg/kg) than cucumbers (877.37-3576.15 μg/kg). Moreover, fluopyram and trifloxystrobin dissipated faster in cucumbers (half-life range, 2.60-10.66 d) than in cowpeas (10.83-22.36 d). Fluopyram and trifloxystrobin were the main compounds found in field samples, and their metabolites, fluopyram benzamide and trifloxystrobin acid, fluctuated at low residue levels (≤76.17 μg/kg). Repeated spraying resulted in the accumulation of fluopyram, trifloxystrobin, fluopyram benzamide and trifloxystrobin acid in cucumbers and cowpeas. Peeling, washing, stir-frying, boiling and pickling were able to partially or substantially remove fluopyram and trifloxystrobin residues from raw cucumbers and cowpeas (processing factor range, 0.12-0.97); on the contrary, trifloxystrobin acid residues appeared to be concentrated in pickled cucumbers and cowpeas (processing factor range, 1.35-5.41). Chronic and acute risk assessments suggest that the levels of fluopyram and trifloxystrobin in cucumbers and cowpeas were within a safe range based on the field residue data of the present study. The potential hazards of fluopyram and trifloxystrobin should be continuously assessed for their high residue concentrations and potential accumulation effects.
Collapse
Affiliation(s)
- Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Zhan Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
El-Sheikh ESA, Li D, Hamed I, Ashour MB, Hammock BD. Residue Analysis and Risk Exposure Assessment of Multiple Pesticides in Tomato and Strawberry and Their Products from Markets. Foods 2023; 12:1936. [PMID: 37238754 PMCID: PMC10217756 DOI: 10.3390/foods12101936] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Pesticides are used on fruit and vegetable crops to obtain greater yield and quality. Residues can be detected in these crops or their products if applied pesticides do not degrade naturally. Therefore, this study aimed to estimate pesticide residues in some strawberry and tomato-based products available in the market for human consumption and associated dietary risks. Contamination with 3-15 pesticides in the tested samples was found. The total number of pesticides detected in the tested samples was 20, belonging to the group of insecticides (84%) and fungicides (16%). Pesticides of cypermethrin, thiamethoxam, chlorpyrifos, and lambda-cyhalothrin appeared at 100% in a number of samples, where the most detected was cypermethrin followed by thiamethoxam. The average values of pesticide residues detected in the tested samples ranged from 0.006 to 0.568 mg kg-1, where it was found that cypermethrin had the highest residue value and appeared in strawberry jam obtained from the market. The recovery rate of pesticides from fortified samples with pyrethroids ranged from 47.5% (fenvalerate) to 127% (lambda-cyhalothrin). Home processing of fortified tomato and strawberry samples had a significant effect on reducing residues in tomato sauce and strawberry jam, where the reduction reached 100%. The results of acute and chronic risk assessment showed that their values were much lower than 100%, indicating minimal risk of dietary intake.
Collapse
Affiliation(s)
- El-Sayed A. El-Sheikh
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Al-Sharkia, Egypt
| | - Dongyang Li
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Ibrahim Hamed
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Al-Sharkia, Egypt
| | - Mohamed-Bassem Ashour
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Al-Sharkia, Egypt
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Capparelli MV, Ponce-Vélez G, Dzul-Caamal R, Rodriguez-Cab EM, Cabrera M, Lucas-Solis O, Moulatlet GM. Multi-level responses of oysters Crassostrea virginica for assessing organochlorine pesticides in a Ramsar coastal lagoon in southern Mexico. CHEMOSPHERE 2023; 320:138064. [PMID: 36754301 DOI: 10.1016/j.chemosphere.2023.138064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Organochlorine pesticides (OCPs) have been intensively used without proper regulation and control in Latin America due to the prevalence of diseases and pests, thus posing potential risks to nontarget organisms. Initiatives for ecosystem preservation, such as to designate protected areas, may not be enough to avoid contamination by OCPs, considering that protected areas tend to be permeable to diffuse sources. Here, we investigate multi-level responses of the oyster Crassostrea virginica to OCPs in Laguna de Términos, a RAMSAR coastal lagoon in the southern Gulf of Mexico. For this aim, OCPs occurrence and concentrations in the water, sediment, and in oysters from 3 settlement banks were assessed. Enzymatic and non-enzymatic biochemical biomarkers were quantified in the oysters' mantle and digestive gland, and the human health risk due to oyster consumption was also evaluated. OCPs in water were below detection limits. Fourteen OCPs were detected in sediments (∑OCPs mean of 49 ngg-1) and 7 in oyster tissues (∑OCPs mean of 121 ngg-1). The occurrence of OCPs was related to the land uses along the watersheds of the rivers that drain into the lagoon. Biochemical responses were correlated with OCPs (∑HCH, ∑DDT, heptachlor and endosulfan) in sediment, and oyster tissues. OCPs in oyster tissues showed a strong association with pro-oxidant forces and oxidative stress responses (Superoxide dismutase, Catalase, Glutathione Peroxidase, and lipid peroxidation), and neurotoxicity (Acetylcholinesterase), suggesting that the current OCPs contamination exerts significant stress. Our study also shows that the consumption of oysters from the lagoon increases the potential human health risk. Considering that Laguna de Términos is a protected Ramsar site, we suggest that environmental protection measures should be increased and that a monitoring program for OCPs exposure is necessary to assess the effects on this ecosystem.
Collapse
Affiliation(s)
- Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, C. P 24157, Ciudad del Carmen, Campeche, Mexico
| | - Guadalupe Ponce-Vélez
- Laboratorio de Contaminación Marina, Instituto de Ciencias del Mar y Limnología, UNAM. Circuito Exterior s/n, Cd. Universitaria, C.P. 04510, Ciudad de, Mexico
| | - Ricardo Dzul-Caamal
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070, Campeche, Mexico
| | - Erick M Rodriguez-Cab
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070, Campeche, Mexico
| | - Marcela Cabrera
- Laboratorio Nacional de Referencia Del Agua, Universidad Regional Amazónica Ikiam, Ecuador; University of Valencia, 46980, Paterna, Spain
| | - Oscar Lucas-Solis
- Facultad de Ciencias de La Tierra y Agua, Universidad Regional Amazónica Ikiam, Km 7, Vía Muyuna, Tena, Napo, Ecuador
| | - Gabriel M Moulatlet
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico.
| |
Collapse
|
9
|
Zapata-Corella P, Ren ZH, Liu YE, Rigol A, Lacorte S, Luo XJ. Presence of novel and legacy flame retardants and other pollutants in an e-waste site in China and associated risks. ENVIRONMENTAL RESEARCH 2023; 216:114768. [PMID: 36370811 DOI: 10.1016/j.envres.2022.114768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Electrical and Electronic Equipment (EEE) residues and their management have been widely identified as potential sources of plasticizers and flame retardants to the environment, especially in non-formal e-waste facilities. This study evaluates the distribution, partitioning and environmental and human impact of organophosphate esters (OPEs), legacy polychlorinated biphenyls (PCBs), polybromodiphenyl ethers (PBDEs) and organochlorine pesticides (OCPs) in the e-waste recycling area of Baihe Tang village, in the Qingyuan county, Guangdong province, China. A plastic debris lump accumulated in a small pond during years was identified as the main source of pollution with ∑pollutants of 8400 μg/g dw, being OPEs the main contaminants detected, followed by PBDEs. This lump produced the contamination of water, sediments, soils and hen eggs in the surrounding area at high concentrations. Plastic-water and water-sediment partitioning coefficients explained the migration of OPEs to the water body and accumulation in sediments, with a strong dependence according to the KOW. Triphenyl phosphate (TPhP), tricresyl phosphate (TCPs) and high chlorination degree PCBs produced a risk in soils and sediments, considering the lowest predicted no effect concentration, while the presence of PCBs and PBDEs in free range hen eggs exceeded the acceptable daily intake. OCPs were detected at low concentrations in all samples. The presence of organic contaminants in e-waste facilities worldwide is discussed to highlight the need for a strict control of EEE management to minimize environmental and human risks.
Collapse
Affiliation(s)
- Pablo Zapata-Corella
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Zi-He Ren
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Research Centre of Eco-environment of the Middle Yellow River, Shanxi normal University, Taiyuan, 030031, China
| | - Yin-E Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Anna Rigol
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Catalonia, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain.
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
10
|
Olisah C, Rubidge G, Human LRD, Adams JB. Tissue distribution, dietary intake and human health risk assessment of organophosphate pesticides in common fish species from South African estuaries. MARINE POLLUTION BULLETIN 2023; 186:114466. [PMID: 36502772 DOI: 10.1016/j.marpolbul.2022.114466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
This study assessed the tissue distribution, dietary intake, and potential health risks of eight OPPs in Pomadasys commersonnii (Spotted grunter) and Mugil cephalus (Flathead mullet) from the Sundays and Swartkops estuaries in South Africa. The highest concentration in fish tissues was found in muscles of M. cephalus (178 ± 80.4 ng/g ww) and P. commersonnii (591 ± 280 ng/g ww) from Sundays Estuary. The ∑6OPPs concentration in muscles from both fish species was higher in muscles than in the gills with fenitrothion dominating the distribution profile. Results from the path analysis indicate that lipid, weights, and length of the fish species do not influence the concentration of OPPs in the studied fish species. The calculated hazard ratios, which represent the non-carcinogenic risks, were less than one for all OPPs, indicating that the concentration of OPPs detected in fish muscles had negligible consequences on human health.
Collapse
Affiliation(s)
- Chijioke Olisah
- DSI/NRF Research Chair, Shallow Water Ecosystems, Nelson Mandela University, PO Box 77000, Gqeberha 6031, South Africa; Department of Botany, Institute for Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha 6031, South Africa; Department of Chemistry, Nelson Mandela University, PO Box 77000, Gqeberha 6031, South Africa.
| | - Gletwyn Rubidge
- Department of Chemistry, Nelson Mandela University, PO Box 77000, Gqeberha 6031, South Africa
| | - Lucienne R D Human
- Department of Botany, Institute for Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha 6031, South Africa; South African Environmental Observation Network (SAEON) Elwandle Coastal Node, PO Box 77000, Gqeberha 6031, South Africa
| | - Janine B Adams
- DSI/NRF Research Chair, Shallow Water Ecosystems, Nelson Mandela University, PO Box 77000, Gqeberha 6031, South Africa; Department of Botany, Institute for Coastal and Marine Research (CMR), Nelson Mandela University, PO Box 77000, Gqeberha 6031, South Africa
| |
Collapse
|