1
|
Chen HC, Lin TY, Peng HC, Lee YH, Wang RC. Versatile g-C 3N 4/AlOOH nanocomposites: Efficient photocatalyst for dye removal, algae inactivation, and glucose detection. CHEMOSPHERE 2025; 371:144033. [PMID: 39732407 DOI: 10.1016/j.chemosphere.2024.144033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/28/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024]
Abstract
Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-C3N4/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-C3N4 alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 h. This study marked the first demonstration of using a low-power LED (0.6W) for photocatalytic algae inactivation in an aquarium ecosystem. Fluorescence spectroscopy showed a 98.9% removal efficiency of chlorophyll a after 12 h of photocatalyzing by g-C3N4/AlOOH, doubling that of g-C3N4 alone. Algae inactivation was attributed to rupture, dehydration, and changes in dissolved organic matter. Hole (h+) trapping experiments identified them as the primary active species for degrading methyl orange and algae. Materials analyses confirmed the formation of g-C3N4-AlOOH heterostructures, high surface potential, and Type II heterojunctions, which reduce electron-hole pair recombination. Furthermore, g-C3N4/AlOOH demonstrated selective non-enzymatic fluorescence detection of glucose, showing a linear relationship in 0∼4 mM, suitable for tears glucose detection. This study offers crucial insights and strategies for designing novel, non-toxic, high-performance visible light photocatalytic materials, efficient dye degradation, algae inactivation, and selective glucose detection.
Collapse
Affiliation(s)
- Hsiu-Cheng Chen
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Ting-Yu Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Hsin-Cheng Peng
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Yu-Hsuan Lee
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Ruey-Chi Wang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
2
|
Li Y, Sánchez-Montes I, Yang L, Gamal El-Din M, Zhang X. A novel approach for immobilizing Ag/ZnO nanorods on a glass substrate: Application in solar light-driven degradation of micropollutants in water. WATER RESEARCH 2024; 268:122736. [PMID: 39546973 DOI: 10.1016/j.watres.2024.122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
One of the main challenges in applying photocatalysts for water treatment is the complex separation and recycling process. In this study, we developed highly stable, porous zinc oxide nanorods (ZnO NRs) immobilized on glass vials using a solvent exchange process (SEP) and hydrothermal calcination. Key parameters, including oleic acid concentration and hydrothermal growth time, were optimized to maximize the active surface area, significantly enhancing photodegradation performance. Under the best conditions, ZnO NRs-coated vials achieved nearly 100% degradation of sulfamethoxazole (SMX) in 10 h of simulated solar irradiation. Depositing silver nanoparticles on the surface of ZnO NRs (Ag/ZnO NRs) further improved performance, reducing degradation time to 4 h and increasing photocatalyst stability. The Ag/ZnO NRs-coated vials, optimized with an Ag precursor concentration of 0.05 M, also demonstrated high degradation rates (>99%) for eight organic micropollutants at environmentally relevant concentrations over multiple reuse cycles and with minimal metal leaching. This study presents an innovative, tunable method for immobilizing photocatalysts on glass substrates, offering high surface area, excellent photocatalytic activity, and mechanical properties, making it highly suitable for water treatment applications.
Collapse
Affiliation(s)
- Yanan Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Isaac Sánchez-Montes
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Lingling Yang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
3
|
Baskar G, Nashath Omer S, Saravanan P, Rajeshkannan R, Saravanan V, Rajasimman M, Shanmugam V. Status and future trends in wastewater management strategies using artificial intelligence and machine learning techniques. CHEMOSPHERE 2024; 362:142477. [PMID: 38844107 DOI: 10.1016/j.chemosphere.2024.142477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
The two main things needed to fulfill the world's impending need for water in the face of the widespread water crisis are collecting water and recycling. To do this, the present study has placed a greater focus on water management strategies used in a variety of contexts areas. To distribute water effectively, save it, and satisfy water quality requirements for a variety of uses, it is imperative to apply intelligent water management mechanisms while keeping in mind the population density index. The present review unveiled the latest trends in water and wastewater recycling, utilizing several Artificial Intelligence (AI) and machine learning (ML) techniques for distribution, rainfall collection, and control of irrigation models. The data collected for these purposes are unique and comes in different forms. An efficient water management system could be developed with the use of AI, Deep Learning (DL), and the Internet of Things (IoT) structure. This study has investigated several water management methodologies using AI, DL and IoT with case studies and sample statistical assessment, to provide an efficient framework for water management.
Collapse
Affiliation(s)
- Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600119. India; School of Engineering, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Soghra Nashath Omer
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - V Saravanan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - Venkatkumar Shanmugam
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Milošević K, Lončarević D, Kalagasidis Krušić M, Hadnađev-Kostić M, Dostanić J. Eco-Friendly g-C 3N 4/Carboxymethyl Cellulose/Alginate Composite Hydrogels for Simultaneous Photocatalytic Degradation of Organic Dye Pollutants. Int J Mol Sci 2024; 25:7896. [PMID: 39063138 PMCID: PMC11277058 DOI: 10.3390/ijms25147896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The presented study was focused on the simple, eco-friendly synthesis of composite hydrogels of crosslinked carboxymethyl cellulose (CMC)/alginate (SA) with encapsulated g-C3N4 nanoparticles. The structural, textural, morphological, optical, and mechanical properties were determined using different methods. The encapsulation of g-C3N4 into CMC/SA copolymer resulted in the formation of composite hydrogels with a coherent structure, enhanced porosity, excellent photostability, and good adhesion. The ability of composite hydrogels to eliminate structurally different dyes with the same or opposite charge properties (cationic Methylene Blue and anionic Orange G and Remazol Brilliant Blue R) in both single- and binary-dye systems was examined through adsorption and photocatalytic reactions. The interactions between the dyes and g-C3N4 and the negatively charged CMC/SA copolymers had a notable influence on both the adsorption capacity and photodegradation efficiency of the prepared composites. Scavenger studies and leaching tests were conducted to gain insights into the primary reactive species and to assess the stability and long-term performance of the g-C3N4/CMC/SA beads. The commendable photocatalytic activity and excellent recyclability, coupled with the elimination of costly catalyst separation requirements, render the g-C3N4/CMC/SA composite hydrogels cost-effective and environmentally friendly materials, and strongly support their selection for tackling environmental pollution issues.
Collapse
Affiliation(s)
- Ksenija Milošević
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.L.); (J.D.)
| | - Davor Lončarević
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.L.); (J.D.)
| | - Melina Kalagasidis Krušić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Milica Hadnađev-Kostić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21102 Novi Sad, Serbia;
| | - Jasmina Dostanić
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, National Institute of Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (D.L.); (J.D.)
| |
Collapse
|
5
|
Bhattacharjee S, Linley S, Reisner E. Solar reforming as an emerging technology for circular chemical industries. Nat Rev Chem 2024:10.1038/s41570-023-00567-x. [PMID: 38291132 DOI: 10.1038/s41570-023-00567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 02/01/2024]
Abstract
The adverse environmental impacts of greenhouse gas emissions and persistent waste accumulation are driving the demand for sustainable approaches to clean-energy production and waste recycling. By coupling the thermodynamically favourable oxidation of waste-derived organic carbon streams with fuel-forming reduction reactions suitable for producing clean hydrogen or converting CO2 to fuels, solar reforming simultaneously valorizes waste and generates useful chemical products. With appropriate light harvesting, catalyst design, device configurations and waste pre-treatment strategies, a range of sustainable fuels and value-added chemicals can already be selectively produced from diverse waste feedstocks, including biomass and plastics, demonstrating the potential of solar-powered upcycling plants. This Review highlights solar reforming as an emerging technology that is currently transitioning from fundamental research towards practical application. We investigate the chemistry and compatibility of waste pre-treatment, introduce process classifications, explore the mechanisms of different solar reforming technologies, and suggest appropriate concepts, metrics and pathways for various deployment scenarios in a net-zero-carbon future.
Collapse
Affiliation(s)
| | - Stuart Linley
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Yoo J, Lee J, Kim J. A floating photocatalytic fabric integrated with a AgI/UiO-66-NH 2 heterojunction as a facile strategy for wastewater treatment. RSC Adv 2024; 14:1794-1802. [PMID: 38192319 PMCID: PMC10772545 DOI: 10.1039/d3ra07534f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
With an increased need of wastewater treatment, application of photocatalysts has drawn growing research attention as an advanced water remediation strategy. Herein, a floating photocatalytic fabric in a woven construction was developed for removal of Rhodamine B (RhB) in water. For an efficient photocatalytic reaction, AgI nanoparticles were grown on the surface of UiO-66-NH2 crystals in a layered structure, forming a heterojunction system on a cotton yarn, and this was woven with polypropylene yarn. The floating photocatalyst demonstrated the maximized light utilization and adequate contact with contaminated water. Through the heterojunction system, the electrons and holes were effectively separated to generate reactive chemical species, and this eventually led to an enhanced photocatalytic performance of AgI/UiO@fabric reaching 98% removal efficiency after 2 hours of irradiation. Photodegradation of RhB occurred mainly by superoxide radicals and holes, which were responsible for de-ethylation and decomposition of an aromatic ring, respectively. The kinetics of the photocatalytic reaction suggested that circulation of solution by stirring affected the photocatalytic removal rate. The recycle test demonstrated the potential long-term applicability of the developed material with structural integrity and catalytic stability. This study highlights the proof-of-concept of a floating photocatalytic material for facile and effective water remediation with repeated usability.
Collapse
Affiliation(s)
- Jaeseon Yoo
- Department of Fashion and Textiles, Seoul National University Seoul 08826 Republic of Korea
| | - Jinwook Lee
- Department of Fashion and Textiles, Seoul National University Seoul 08826 Republic of Korea
| | - Jooyoun Kim
- Department of Fashion and Textiles, Seoul National University Seoul 08826 Republic of Korea
- Research Institute of Human Ecology, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
7
|
Singh BJ, Chakraborty A, Sehgal R. A systematic review of industrial wastewater management: Evaluating challenges and enablers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119230. [PMID: 37832302 DOI: 10.1016/j.jenvman.2023.119230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
The study provides a systematic literature review (SLR) encompassing industrial wastewater management research from the past decade, examining enablers, challenges, and prevailing practices. Originating from manufacturing, energy production, and diverse industrial processes, industrial wastewater's handling is critical due to its potential to impact the environment and public health. The research aims to comprehend the current state of industrial wastewater management, pinpoint gaps, and outline future research prospects. The SLR methodology involves scouring the Scopus database, yielding an initial pool of 253 articles. Refinement via search code leaves 101 articles, followed by abstract screening that reduces articles to 79, and finally 66 well-focused articles left for thorough full-text examination. Results underscore the significance of regulatory frameworks, technological innovation, and sustainability considerations as cornerstones for effective wastewater management. However, substantial impediments like; inadequate infrastructure, resource constraints and the necessity for stakeholder collaboration still exist. The study highlights emerging research domains, exemplified by advanced technologies like nanotechnology and bioremediation, alongside the pivotal role of circular economy principles in wastewater management. The SLR offers an exhaustive view of contemporary industrial wastewater management, accentuating the imperative of an all-encompassing approach that integrates regulatory, technological, and sustainability facets. Notably, the research identifies gaps and opportunities for forthcoming exploration, advocating for interdisciplinary research and intensified stakeholder collaboration. The study's insights cater to policymakers, practitioners, and researchers, equipping them to address the challenges and capitalize on prospects in industrial wastewater management effectively.
Collapse
Affiliation(s)
- Bikram Jit Singh
- Mechanical Engineering Dept., MM Engineering College, Maharishi Markandeshwar Deemed to be University, Mullana, 133207, Ambala, Haryana, India
| | | | - Rippin Sehgal
- Department of Biotechnology Engineering, Ambala College of Engineering and Applied Research, Devsthali, Ambala-133101, Haryana, India
| |
Collapse
|
8
|
Xu X, Feng X, Wang W, Song K, Ma D, Zhou Y, Shi JW. Construction of II-type and Z-scheme binding structure in P-doped graphitic carbon nitride loaded with ZnO and ZnTCPP boosting photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 651:669-677. [PMID: 37562308 DOI: 10.1016/j.jcis.2023.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
A ternary heterostructure (ZnPPO) was constructed by loading ZnO and tetrakis (4-carboxyphenyl) zinc porphyrin (ZnTCPP) with P-doped g-C3N4 (PCN). In contrast to binary heterostructures (PCN-ZnO, ZnTCPP-ZnO and ZnTCPP-PCN) and single components (PCN, ZnTCPP and ZnO), ZnPPO has superior photocatalytic activity for H2 generation from water splitting. It is revealed that a binding structure of Ⅱ-type and Z-scheme has been constructed in ZnPPO, which plays a vital role in transferring photo-excited charge carriers. The significant enhancement of photocatalytic activity in ZnPPO is attributed to the effective transfer of photo-generated electrons and holes between the components of the ternary heterostructure.
Collapse
Affiliation(s)
- Xuan Xu
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, Shaanxi, China; State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xiangbo Feng
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, Shaanxi, China.
| | - Wei Wang
- Market Department, China Construction Third Bureau Green Industry Investment Co. Ltd, Wuhan 430056, China
| | - Kunli Song
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yixuan Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
9
|
Li X, Li G, Li M, Ji X, Tang C, Fu X, Jiang H, Tan X, Wang H, Hu X. Developing self-floating N-defective graphitic carbon nitride photocatalyst for efficient photodegradation of Microcystin-LR under visible light. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165171. [PMID: 37379931 DOI: 10.1016/j.scitotenv.2023.165171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
The frequent occurrence of algal blooms in water bodies leads to a significant accumulation of microcystin-LR (MC-LR). In this study, we developed a porous foam-like self-floating N-deficient g-C3N4 (SFGN) photocatalyst for efficient photocatalytic degradation of MC-LR. Both the characterization results and DFT calculations indicate that the surface defects and floating state of SFGN synergistically enhance light harvesting and photogenerated carrier migration rate. The photocatalytic process achieved a nearly 100 % removal rate of MC-LR within 90 min, while the self-floating state of SFGN maintained good mechanical strength. ESR and radical capture experiments revealed that the primary active species responsible for the photocatalytic process was OH. This finding confirmed that the fragmentation of MC-LR occurs as a result of OH attacking the MC-LR ring. LC-MS analysis indicated that majority of the MC-LR molecules were mineralized into small molecules, allowing us to infer possible degradation pathways. Furthermore, after four consecutive cycles, SFGN exhibited remarkable reusability and stability, highlighting the potential of floating photocatalysis as a promising technique for MC-LR degradation.
Collapse
Affiliation(s)
- Xin Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Guoyu Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Meifang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Xiaodong Ji
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Chunfang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Xiaohua Fu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Honghui Jiang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
10
|
Zhou Y, Zhang Y, Zhang L, Qiu J, Yao J. In-situ synthesis of floating ZnIn2S4/cellulose foam for facile photocatalysis. Carbohydr Polym 2023; 312:120845. [PMID: 37059522 DOI: 10.1016/j.carbpol.2023.120845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The delicate design of photocatalyst monoliths is of great significance for the practical applications of artificial photocatalysis. An in-situ synthesis to prepare ZnIn2S4/cellulose foam was developed. Cellulose is dispersed in a highly concentrated ZnCl2 aqueous solution to prepare Zn2+/cellulose foam. Zn2+ ions are pre-anchored by hydrogen bonds on cellulose and become in-situ sites for synthesizing ultra-thin ZnIn2S4 nanosheets. This synthesis method makes ZnIn2S4 nanosheets and cellulose tightly bound and prevents ZnIn2S4 nanosheets from stacking in multiple layers. As a proof of concept, the prepared ZnIn2S4/cellulose foam exhibits a favorable performance for photocatalytic reduction of Cr(VI) under visible light. By adjusting the concentration of zinc ions, the optimal ZnIn2S4/cellulose foam is capable to completely reduce Cr(VI) in 2 h and the photocatalytic activities show no decrease after 4 cycles. This work could inspire people to build floating cellulose-based photocatalysts via in-situ synthesis.
Collapse
|
11
|
Linley S, Reisner E. Floating Carbon Nitride Composites for Practical Solar Reforming of Pre-Treated Wastes to Hydrogen Gas. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207314. [PMID: 37171802 PMCID: PMC10375181 DOI: 10.1002/advs.202207314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Indexed: 05/13/2023]
Abstract
Solar reforming (SR) is a promising green-energy technology that can use sunlight to mitigate biomass and plastic waste while producing hydrogen gas at ambient pressure and temperature. However, practical challenges, including photocatalyst lifetime, recyclability, and low production rates in turbid waste suspensions, limit SR's industrial potential. By immobilizing SR catalyst materials (carbon nitride/platinum; CNx |Pt and carbon nitride/nickel phosphide; CNx |Ni2 P) on hollow glass microspheres (HGM), which act as floating supports enabling practical composite recycling, such limitations can be overcome. Substrates derived from plastic and biomass, including poly(ethylene terephthalate) (PET) and cellulose, are reformed by floating SR composites, which are reused for up to ten consecutive cycles under realistic, vertical simulated solar irradiation (AM1.5G), reaching activities of 1333 ± 240 µmolH2 m-2 h-1 on pre-treated PET. Floating SR composites are also advantageous in realistic waste where turbidity prevents light absorption by non-floating catalyst powders, achieving 338.1 ± 1.1 µmolH2 m-2 h-1 using floating CNx versus non-detectable H2 production with non-floating CNx and a pre-treated PET bottle as substrate. Low Pt loadings (0.033 ± 0.0013% m/m) demonstrate consistent performance and recyclability, allowing efficient use of precious metals for SR hydrogen production from waste substrates at large areal scale (217 cm2 ), taking an important step toward practical SR implementation.
Collapse
Affiliation(s)
- Stuart Linley
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB21EW, UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB21EW, UK
| |
Collapse
|
12
|
Si Q, Wang H, Kuang J, Liu B, Zheng S, Zhao Q, Jia W, Wu Y, Lu H, Wu Q, Yu T, Guo W. Light and nitrogen vacancy-intensified nonradical oxidation of organic contaminant with Mn (III) doped carbon nitride in peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131463. [PMID: 37141778 DOI: 10.1016/j.jhazmat.2023.131463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Recently, Mn-based materials have a great potential for selective removal of organic contaminants with the assistance of oxidants (PMS, H2O2) and the direct oxidation. However, the rapid oxidation of organic pollutants by Mn-based materials in PMS activation still presents a challenge due to the lower conversion of surface Mn (III)/Mn (IV) and higher reactive energy barrier for reactive intermediates. Here, we constructed Mn (III) and nitrogen vacancies (Nv) modified graphite carbon nitride (MNCN) to break these aforementioned limitations. Through analysis of in-situ spectra and various experiments, a novel mechanism of light-assistance non-radical reaction is clearly elucidated in MNCN/PMS-Light system. Adequate results indicate that Mn (III) only provide a few electrons to decompose Mn (III)-PMS* complex under light irradiation. Thus, the lacking electrons necessarily are supplied from BPA, resulting in its greater removal, then the decomposition of the Mn (III)-PMS* complex and light synergism form the surface Mn (IV) species. Above Mn-PMS complex and surface Mn (IV) species lead to the BPA oxidation in MNCN/PMS-Light system without the involvement of sulfate (SO4• ̶) and hydroxyl radicals (•OH). The study provides a new understanding for accelerating non-radical reaction in light/PMS system for the selective removal of contaminant.
Collapse
Affiliation(s)
- Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Junyan Kuang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Shanshan Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Hao Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Tao Yu
- Tianjin Univ, Sch Chem Eng & Technol, Tianjin 300350, People's Republic of China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China.
| |
Collapse
|
13
|
Li S, Wu Y, Dao MU, Dragoi EN, Xia C. Spotlighting of the role of catalysis for biomass conversion to green fuels towards a sustainable environment: Latest innovation avenues, insights, challenges, and future perspectives. CHEMOSPHERE 2023; 318:137954. [PMID: 36702404 DOI: 10.1016/j.chemosphere.2023.137954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Recently, extensive resources were dedicated to studying how to use catalysis to convert biomass into environmentally friendly fuels. Problems with this technology include the processing of lignocellulosic sources and the development/optimization of novel porous materials as efficient monofunctional and bifunctional catalysts for biomass fuel production. This paper reviews recent advancements in catalysts procedures. Besides, it offers assessments of the methods used in catalytic biomass pyrolysis. Understanding the catalytic conversion process of lignocellulosic biomass into bio-oil remains a key research challenge in biomass catalytic pyrolysis.
Collapse
Affiliation(s)
- Suiyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - My Uyen Dao
- Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University, Danang, 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Danang, 550000, Viet Nam.
| | - Elena-Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron No 73, 700050, Romania
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
14
|
Garg H, Patial S, Raizada P, Nguyen VH, Kim SY, Le QV, Ahamad T, Alshehri SM, Hussain CM, Nguyen TTH, Singh P. Hexagonal-borocarbonitride (h-BCN) based heterostructure photocatalyst for energy and environmental applications: A review. CHEMOSPHERE 2023; 313:137610. [PMID: 36563726 DOI: 10.1016/j.chemosphere.2022.137610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Formulation of heterojunction with remarkable high efficiency by utilizing solar light is promising to synchronously overcome energy and environmental crises. In this concern, hexagonal-borocarbonitride (h-BCN) based Z-schemes have proved potential candidates due to their spatially separated oxidation and reduction sites, robust light-harvesting ability, high charge pair migration and separation, and strong redox ability. H-BCN has emerged as a hotspot in the research field as a metal-free photocatalyst with a tunable bandgap range of 0-5.5 eV. The BCN photocatalyst displayed synergistic benefits of both graphene and boron nitride. Herein, the review demonstrates the current state-of-the-art in the Z-scheme photocatalytic application with a special emphasis on the predominant features of their photoactivity. Initially, fundamental aspects and various synthesis techniques are discussed, including thermal polymerization, template-assisted, and template-free methods. Afterward, the reaction mechanism of direct Z-scheme photocatalysts and indirect Z-scheme (all-solid-state) are highlighted. Moreover, the emerging Step-scheme (S-scheme) systems are briefly deliberated to understand the charge transfer pathway mechanism with an induced internal electric field. This review critically aims to comprehensively summarize the photo-redox applications of various h-BCN-based heterojunction photocatalysts including CO2 photoreduction, H2 evolution, and pollutants degradation. Finally, some challenges and future direction of h-BCN-based Z-scheme photocatalyst in environmental remediation are also proposed.
Collapse
Affiliation(s)
- Heena Garg
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Soo Young Kim
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J, 07102, USA
| | - Thi Thanh Huyen Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
15
|
Wudil Y, Ahmad U, Gondal M, Al-Osta MA, Almohammedi A, Said R, Hrahsheh F, Haruna K, Mohammed J. Tuning of Graphitic Carbon Nitride (g-C3N4) for Photocatalysis: A Critical Review. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
16
|
BiFeO3-based Z scheme photocatalytic systems: Advances, mechanism, and applications. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Xu Y, Wu P, Wu M, Gu Y, Yu H, Ding Z. Solvothermal Synthesis, Structural Characterization and Optical Properties of Pr-Doped CeO 2 and Their Degradation for Acid Orange 7. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6953. [PMID: 36234294 PMCID: PMC9572288 DOI: 10.3390/ma15196953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Pr-doped CeO2 with different doping levels was prepared from Ce(NO3)3∙6H2O and Pr(NO3)3∙6H2O by solvothermal method without any additional reagents, in which the mixed solution of ethylene glycol and distilled water was employed as a solvent. The influences of Pr-doping on phase composition, crystal structure and morphology were investigated, as well as Pr valence and oxygen vacancy defects. The Pr cations entered into the CeO2 crystal lattice with normal trivalence and formed a Pr-CeO2 solid solution based on the fluorite structure. The larger trivalent Pr was substituted for tetravalent Ce in the CeO2 crystal and compensated by oxygen vacancy defects, which caused the local lattice expansion of the crystal lattice. Moreover, the Pr-doped CeO2 solid solutions exhibited visible color variation from bright cream via brick red to dark brown with the increasing of Pr contents. The degradation of AO7 dye was also investigated using a domestic medical ultraviolet lamp; the removal efficiency of AO7 by 1% and 2% Pr-doped CeO2 approached 100%, much higher than 66.2% for undoped CeO2.
Collapse
Affiliation(s)
- Yaohui Xu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Pingkeng Wu
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Mingjin Wu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Yuehe Gu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Hongguang Yu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China
| | - Zhao Ding
- National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
18
|
Tailoring Structure: Current Design Strategies and Emerging Trends to Hierarchical Catalysts. Catalysts 2022. [DOI: 10.3390/catal12101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nature mimicking implies the design of nanostructured materials, which can be assembled into a hierarchical structure, thus outperforming the features of the neat components because of their multiple length scale organization. This approach can be effectively exploited for the design of advanced photocatalysts with superior catalytic activity for energy and environment applications with considerable development in the recent six years. In this context, we propose a review on the state of the art for hierarchical photocatalyst production. Particularly, different synthesis strategies are presented, including template-free structuring, and organic, inorganic, and hybrid templating. Furthermore, emerging approaches based on hybrid and bio-waste templating are also highlighted. Finally, a critical comparison among available methods is carried out based on the envisaged application.
Collapse
|
19
|
Chawla A, Sudhaik A, Raizada P, Khan AAP, Singh A, Van Le Q, Van Huy Nguyen, Ahamad T, Alsheri SM, Asiri AM, Singh P. An overview of SnO2 based Z scheme heterojuctions: Fabrication, mechanism and advanced photocatalytic applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Sun R, Yang J, Huang R, Wang C. Controlled carbonization of microplastics loaded nano zero-valent iron for catalytic degradation of tetracycline. CHEMOSPHERE 2022; 303:135123. [PMID: 35643161 DOI: 10.1016/j.chemosphere.2022.135123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Nano zero-valent iron loaded porous carbon derived from microplastics was designed as heterogeneous catalyst for degradation of persistent organic pollutants. Controlled carbonization of microplastics with molten salt was conducted to tune the morphology of carbon product. Controlled carbonization induces higher carbon yield (from 17.73% to 52.24%) and larger surface area (from 403.72 m2/g to 601.82 m2/g). The catalyst (Fe/MMPC) was characterized by Raman, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscope. Loading nano zero-valent iron onto porous carbon are verified in the catalyst. The process factors including Fe/MMPC dosage, H2O2, pH, anions, and temperature were studied to estimate the catalytic performance. Tetracycline degradation (81.8% within 10 min) is effectively obtained in the Fe/MMPC and H2O2 system. The apparent rate constant is 0.1311-0.2999 min-1 under different temperature, and the activation energy of catalytic process is 22 kJ/mol. Pollutants including rhodamine B, p-nitrophenol, and butylxanthate are efficiently degraded in the catalytic system. The predominant species of catalytic reactions are hydroxyl radicals, which are mainly produced from H2O2 activation enhanced by zero-valent iron in Fe/MMPC. This work offers an innovative strategy for microplastic management and wastewater treatment.
Collapse
Affiliation(s)
- Ruirui Sun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiapeng Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Rong Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
21
|
Preparation and immobilization of Bi2WO6/BiOI/g-C3N4 nanoparticles for the photocatalytic degradation of tetracycline and municipal waste transfer station leachate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Hasnan NSN, Mohamed MA, Anuar NA, Abdul Sukur MF, Mohd Yusoff SF, Wan Mokhtar WNA, Mohd Hir ZA, Mohd Shohaimi NA, Ahmad Rafaie H. Emerging polymeric-based material with photocatalytic functionality for sustainable technologies. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|