1
|
Li Z, Wang Q, Lei Z, Zheng H, Zhang H, Huang J, Ma Q, Li F. Biofilm formation and microbial interactions in moving bed-biofilm reactors treating wastewater containing pharmaceuticals and personal care products: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122166. [PMID: 39154385 DOI: 10.1016/j.jenvman.2024.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The risk of pharmaceuticals and personal care products (PPCPs) has been paid more attention after the outbreak of COVID-19, threatening the ecology and human health resulted from the massive use of drugs and disinfectants. Wastewater treatment plants are considered the final stop to restrict PPCPs from wide spreading into the environment, but the performance of conventional treatment is limited due to their concentrations and characteristics. Previous studies have shown the unreplaceable capability of moving bed-biofilm reactor (MBBR) as a cost-effective method with layered microbial structure for treating wastewater even with toxic compounds. The biofilm community and microbial interactions are essential for the MBBR process in completely degrading or converting types of PPCPs to secondary metabolites, which still need further investigation. This review starts with discussing the initiation of MBBR formation and its influencing parameters according to the research on MBBRs in the recent years. Then the efficiency of MBBRs and the response of biofilm after exposure to PPCPs are further addressed, followed by the bottlenecks proposed in this field. Some critical approaches are also recommended for mitigating the deficiencies of MBBRs based on the recently published publications to reduce the environmental risk of PPCPs. Finally, this review provides fundamental information on PPCPs removal by MBBRs with the main focus on microbial interactions, promoting the MBBRs to practical application in the real world of wastewater treatment.
Collapse
Affiliation(s)
- Zhichen Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qian Wang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hao Zheng
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Haoshuang Zhang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Jiale Huang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qihao Ma
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Fengmin Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China.
| |
Collapse
|
2
|
Li YQ, Zhang CM, Wang Q, Jiao XR. Metagenomic insights into effects of carbon/nitrogen ratio on microbial community and antibiotic resistance in moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 406:131007. [PMID: 38901747 DOI: 10.1016/j.biortech.2024.131007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
This study investigated the effects of carbon/nitrogen (C/N) ratio on microbial community in moving bed biofilm reactor (MBBR) using metagenomic analysis, and the dynamic changes of relevant antibiotic resistance genes (ARGs) were also analyzed. The results showed that under low C/N ratio, MBBR exhibited average removal rates of 98.41 % for ammonia nitrogen and 75.79 % for total nitrogen. Metagenomic analysis showed low C/N ratio altered the structure of biofilm and water microbiota, resulting in the detachment of bacteria such as Actinobacteria from biofilm into water. Furthermore, sulfamethazine (SMZ)-resistant bacteria and related ARGs were released into water under low C/N ratio, which lead to the increase of SMZ resistance rate to 90%. Moreover, most dominant genera are potential hosts for both nitrogen cycle related genes and ARGs. Specifically, Nitrosomonas that carried gene sul2 might be released from biofilm into water. These findings implied the risks of antibiotic resistance dissemination in MBBR under low C/N ratio.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qian Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan-Ru Jiao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
3
|
Savadiya B, Pandey G, Misra SK. Remediation of pharmacophoric laboratory waste by using biodegradable carbon nanoparticles of bacterial biofilm origin. ENVIRONMENTAL RESEARCH 2024; 252:118969. [PMID: 38642641 DOI: 10.1016/j.envres.2024.118969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Research laboratories generate a broad range of hazardous pharmacophoric chemical contaminants, from drugs to dyes used during various experimental procedures. In the recent past, biological methods have demonstrated great potential in the remediation of such contaminants. However, the presence of pharmacophoric chemicals containing antibiotics, xenobiotics, and heavy metals suppresses the growth and survivability of used microbial agents, thus decreasing the overall efficiency of biological remediation processes. Bacterial biofilm is a natural arrangement to counter some of these inhibitions but its use in a systemic manner, portable devices, and pollutant remediation plants post serious challenges. This could be countered by synthesizing a biodegradable carbon nanoparticle from bacterial biofilm. In this study, extracellular polymeric substance-based carbon nanoparticles (Bio-EPS-CNPs) were synthesized from bacterial biofilm derived from Bacillus subtilis NCIB 3610, as a model bacterial system. The produced Bio-EPS-CNPs were investigated for physiochemical properties by dynamic light scattering, optical, Fourier-transformed infrared, and Raman spectroscopy techniques, whereas X-ray diffraction study, scanning electron microscopy, and transmission electron microscopy were used to investigate structural and morphological features. The Bio-EPS-CNPs exhibited negative surface charge with spherical morphology having a uniform size of sub-100 nm. The maximum remediation of some laboratory-produced pharmacophoric chemicals was achieved through a five-round scavenging process and confirmed by UV/Vis spectroscopic analysis with respect to the used pharmacophore. This bioinspired remediation of used pharmacophoric chemicals was achieved through the mechanism of surface adsorption via hydrogen bonding and electrostatic interactions, as revealed by different characterizations. Further experiments were performed to investigate the effects of pH, temperature, stirring, and the protocol of scavenging to establish Bio-EPS-CNP as a possible alternative to be used in research laboratories for efficient removal of pharmacophoric chemicals by incorporating it in a portable, filter-based device.
Collapse
Affiliation(s)
- Bhawana Savadiya
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, UP, 208016, India
| | - Gaurav Pandey
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, UP, 208016, India
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, UP, 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, UP, 208016, India.
| |
Collapse
|
4
|
He Y, Liu L, Wang Q, Dong X, Huang J, Jia X, Peng X. Bio-degraded of sulfamethoxazole by microbial consortia without addition nutrients: Mineralization, nitrogen removal, and proteomic characterization. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133558. [PMID: 38262313 DOI: 10.1016/j.jhazmat.2024.133558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Sulfamethoxazole (SMX) is widely employed as an antibiotic, while its residue in environment has become a common public concern. Using 100 mg/L SMX as the sole nutrient source, the acclimated sludge obtained by this study displayed an excellent SMX degradation performance. The addition of SMX resulted in significant microbiological differentiation within the acclimated sludge. Microbacterium (6.6%) was identified as the relatively dominant genera in metabolism group that used SMX as sole carbon source. Highly expressed proteins from this strain strongly suggested its essential role in SMX degradation, while the degradation of SMX by other strains (Thaurea 78%) in co-metabolism group appeared to also rely on this strain. The interactions of differentially expressed proteins were primarily involved in metabolic pathways including TCA cycle and nitrogen metabolism. It is concluded that the sulfonamides might serve not only as the carbon source but also as the nitrogen source in the reactor. A total of 24 intermediates were identified, 13 intermediates were newly reported. The constructed pathway suggested the mineralizing and nitrogen conversion ability towards SMX. Batch experiments also proved that the acclimated sludge displayed ability to biodegrade other sulfonamides, including SM2 and SDZ and SMX-N could be removed completely.
Collapse
Affiliation(s)
- Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qi Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoqi Dong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China.
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Xia Z, Ng HY, Xu D, Bae S. Lumen air pressure regulated multifunctional microbiotas in membrane-aerated biofilm reactors for simultaneous nitrogen removal and antibiotic elimination from aquaculture wastewater. WATER RESEARCH 2024; 251:121102. [PMID: 38198973 DOI: 10.1016/j.watres.2024.121102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
In this study, two membrane-aerated biofilm reactors (MABRs) were constructed: one solely utilizing biofilm and another hybrid MABR (HMABR) incorporating both suspended-sludge and biofilm to treat low C/N aquaculture wastewater under varying lumen air pressure (LAP). Both HMABR and MABR demonstrated superior nitrogen removal than conventional aeration reactors. Reducing LAP from 10 kPa to 2 kPa could enhance denitrification processes without severely compromising nitrification, resulting in an increase in total inorganic nitrogen (TIN) removal from 50.2±3.1 % to 71.6±1.0 %. The HMABR exhibited better denitrification efficacy than MABR, underscoring its potential for advanced nitrogen removal applications. A decline in LAP led to decreased extracellular polymeric substance (EPS) production, which could potentially augment reactor performance by minimizing mass transfer resistance while maintaining microbial matrix stability and function. Gene-centric metagenomics analysis revealed decreasing LAP impacted nitrogen metabolic potentials and electron flow pathways. The enrichment of napAB at higher LAP and the presence of complete ammonia oxidation (Comammox) Nitrospira at lower LAP indicated aerobic denitrification and Comammox processes in nitrogen removal. Multifunctional microbial communities developed under LAP regulation, diversifying the mechanisms for simultaneous nitrification-denitrification. Increased denitrifying gene pool (narGHI, nirK, norB) and enzymatic activity at a low LAP can amplify denitrification by promoting denitrifying genes and electron flow towards denitrifying enzymes. Sulfamethoxazole (SMX) was simultaneously removed with efficiency up to 80.2 ± 3.7 %, mainly via biodegradation, while antibiotic resistome and mobilome were propagated. Collectively, these findings could improve our understanding of nitrogen and antibiotic removal mechanisms under LAP regulation, offering valuable insights for the effective design and operation of MABR systems in aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Zhengang Xia
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - How Yong Ng
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| | - Dong Xu
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
6
|
Wang X, Zhao YG, Mupindu P, Chen Y. Insight into characteristics of sulphur-based autotrophic denitrifying microbiota in the nitrate removal. ENVIRONMENTAL TECHNOLOGY 2024; 45:1531-1541. [PMID: 36368900 DOI: 10.1080/09593330.2022.2147450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Mariculture wastewater is characterized by low organic carbon to nitrogen ratio (C/N) but high nitrate concentration, which makes it difficult to remove nitrate by the completely heterotrophic denitrification. However, high nitrate discharge poses a threat to the natural environment and human health. Thus, we enriched sulphur-based autotrophic denitrifying (SAD) microbiota and optimized the nitrate removal under different environmental factors and electron donor conditions. The results showed that the dominant genera in the enriched microbiota were previously confirmed autotrophic denitrifiers, Sulfurovum, Thioalkalispira-Sulfurivermis, and Sedimenticola, with a high relative abundance of 41.14%, 21.01%, and 6.17%. Among the environmental factors, pH was the key factor affecting SAD microbiota, and pH 7-9 favoured nitrate removal. However, high pH led to nitrite accumulation (e.g. 10 mg/L at pH = 9), which should be strictly avoided. With regard to electron donors, the optimal concentrations of thiosulphate and nitrate were 50 and 5 mg/L, respectively. The best organic carbon is acetate with an optimal concentration of 10 mg/L. Meanwhile, the initial concentration of thiosulphate was proportional to the nitrate removal rate, while higher concentrations of organic carbon stimulated the heterotrophic denitrification potential of microbiota and thus benefited to dentrification. This study showed that the enriched SAD microbiota was able to achieve efficient nitrate removal under suitable environmental conditions and mixed electron donors and thus presented the potential for application in the treatment of mariculture wastewater.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
- Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Progress Mupindu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Yue Chen
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
7
|
Saidulu D, Agrawal S, Bhatnagar A, Gupta AK. Sulfamethoxazole removal from wastewater via anoxic/oxic moving bed biofilm reactor: Degradation pathways and toxicity assessment. BIORESOURCE TECHNOLOGY 2024; 392:129998. [PMID: 37956948 DOI: 10.1016/j.biortech.2023.129998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The effects of sulfamethoxazole (SMZ), an antibiotic commonly detected in the water environment, on the performance of a single staged anoxic/oxic moving bed biofilm reactor (A/O MBBR), was investigated. The anoxic zone played a key role in the removal of SMZ with a percentage of contribution accounting for around 85% in the overall removal. Denitrifying heterotrophic microbes present in the anoxic zone showed relatively more resistance to higher SMZ loads. It was found that in extracellular polymeric substances, protein content was increased consistently with the increase in SMZ concentration. Based on the detected biotransformation products, four degradation pathways were proposed and the toxicity was evaluated. Metagenomic analysis revealed that at higher SMZ load the activity of genera, such as Proteobacteria and Actinobacteria was significantly affected. In summary, proper design and operation of staged A/O MBBR can offer a resilient and robust treatment towards SMZ removal from wastewater.
Collapse
Affiliation(s)
- Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shivangi Agrawal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
8
|
Ratchnashree SR, Karmegam N, Selvam M, Manikandan S, Deena SR, Subbaiya R, Vickram AS, Kim W, Govarthanan M. Advanced technologies for the determination of quantitative structure-activity relationships and degradation efficiency of micropollutants and their removal in water - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166563. [PMID: 37647970 DOI: 10.1016/j.scitotenv.2023.166563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The growing concentrations of micropollutants in aquatic ecosystems are a global water quality issue. Understanding micropollutants varied chemical composition and potency is essential to solving this complex issue. Micropollutants management requires identifying contaminants to reduce, optimal reduction targets, and the best wastewater recycling locations. Management requires appropriate technological measures. Pharmaceuticals, antibiotics, hormones, and other micropollutants can enter the aquatic environment from point and diffuse sources, with wastewater treatment plants (WWTPs) distributing them in urban areas. Micropollutants like pharmaceuticals and hormones may not be removed by conventional WWTPs. Micropollutants affect the EU, especially in densely populated areas where surface water is consumed. This review examines several technological options that can be integrated into existing treatment methods to address this issue. In this work, oxidation, activated carbon, and their combinations as potential solutions, considering their efficacy and cost were evaluated. This study illuminates micropollutants origin and physico-chemical properties, which affect distribution, persistence, and environmental impacts. Understanding these factors helps us develop targeted micropollutant mitigation strategies to protect water quality. This review can inform policy and decision-making to reduce micropollutant impacts on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- S R Ratchnashree
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 095, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Masilamani Selvam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 095, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India.
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
9
|
Cao Y, Huang R, Li T, Pan D, Shao S, Wu X. Effect of antibiotics on the performance of moving bed biofilm reactor for simultaneous removal of nitrogen, phosphorus and copper(II) from aquaculture wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115590. [PMID: 37839187 DOI: 10.1016/j.ecoenv.2023.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Co-existence of NO3--N, antibiotics, phosphorus (P), and Cu2+ in aquaculture wastewater has been frequently detected, but simultaneous removal and relationship between enzyme and pollutants removal are far from satisfactory. In this study, simultaneous removal of NO3--N, P, antibiotics, and Cu2+ by moving bed biofilm reactor (MBBR) was established. About 95.51 ± 3.40% of NO3--N, 61.24 ± 3.51% of COD, 18.74 ± 1.05% of TP, 88% of Cu2+ were removed synchronously in stage I, and antibiotics removal in stages I-IV was 73.00 ± 1.32%, 79.53 ± 0.88%, 51.07 ± 3.99%, and 33.59 ± 2.73% for tetracycline (TEC), oxytetracycline (OTC), chlortetracycline hydrochloride (CTC), sulfamethoxazole (SMX), respectively. The removal kinetics and toxicity of MBBR effluent were examined, indicating that the first order kinetic model could better reflect the removal of NO3--N, TN, and antibiotics. Co-existence of multiple antibiotics and Cu2+ was the most toxicity to E. coli growth. Key enzyme activity, reactive oxygen species (ROS) level, and its relationship with TN removal were investigated. The results showed that enzymes activities were significantly different under the co-existence of antibiotics and Cu2+. Meanwhile, different components of biofilm were extracted and separated, and enzymatic and non-enzymatic effects of biofilm were evaluated. The results showed that 70.00%- 94.73% of Cu2+ was removed by extracellular enzyme in stages I-V, and Cu2+ removal was mainly due to the action of extracellular enzyme. Additionally, microbial community of biofilm was assessed, showing that Proteobacteria, Bacteroidetes, and Gemmatimonadetes played an important role in the removal of NO3--N, Cu2+, and antibiotics at the phylum level. Finally, chemical bonds of attached and detached biofilm were characterized by X-ray photoelectron spectroscopy (XPS), and effect of nitrogen (N) and P was proposed under the co-existence of antibiotics and Cu2+. This study provides a theoretical basis for further exploring the bioremediation of NO3--N, Cu2+, and antibiotics in aquaculture wastewater.
Collapse
Affiliation(s)
- Ying Cao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Ruiheng Huang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Tenghao Li
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| |
Collapse
|
10
|
Mishra S, Cheng L, Lian Y. Response of biofilm-based systems for antibiotics removal from wastewater: Resource efficiency and process resiliency. CHEMOSPHERE 2023; 340:139878. [PMID: 37604340 DOI: 10.1016/j.chemosphere.2023.139878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Biofilm-based systems have efficient stability to cope-up influent shock loading with protective and abundant microbial assemblage, which are extensively exploited for biodegradation of recalcitrant antibiotics from wastewater. The system performance is subject to biofilm types, chemical composition, growth and thickness maintenance. The present study elaborates discussion on different type of biofilms and their formation mechanism involving extracellular polymeric substances secreted by microbes when exposed to antibiotics-laden wastewater. The biofilm models applied for estimation/prediction of biofilm-based systems performance are explored to classify the application feasibility. Further, the critical review of antibiotics removal efficiency, design and operation of different biofilm-based systems (e.g. rotating biological contactor, membrane biofilm bioreactor etc.) is performed. Extending the information on effect of various process parameters (e.g. hydraulic retention time, pH, biocarrier filling ratio etc.), the microbial community dynamics responsible of antibiotics biodegradation in biofilms, the technological problems, related prospective and key future research directions are demonstrated. The biofilm-based system with biocarriers filling ratio of ∼50-70% and predominantly enriched with bacterial species of phylum Proteobacteria protected under biofilm thickness of ∼1600 μm is effectively utilized for antibiotic biodegradation (>90%) when operated at DO concentration ≥3 mg/L. The C/N ratio ≥1 is best suitable condition to eliminate antibiotic pollution from biofilm-based systems. Considering the significance of biofilm-based systems, this review study could be beneficial for the researchers targeting to develop sustainable biofilm-based technologies with feasible regulatory strategies for treatment of mixed antibiotics-laden real wastewater.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Liu Cheng
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| |
Collapse
|
11
|
Xu Z, Ze S, Chen X, Song X, Wang Y. Mutual influence mechanism of nitrate and sulfamethoxazole on their biotransformation in poly (3-hydroxybutyrate-3-hydroxyvalerate) supported denitrification biofilter for a long-term operation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118897. [PMID: 37683386 DOI: 10.1016/j.jenvman.2023.118897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Nitrate and SMX both play a critical role in their biotransformation in biodegradable polymer-supported denitrification biofilters. However, the mutual influences of nitrate and SMX on their biotransformation for long-term operation remained obscure. Results showed SMX and nitrate had divergent effects on SMX removal. SMX removal rates was positively related with its loading rates, whereas they were negatively related to NLRs. The most abundant metabolite C10H14O3N3S (the reduced form of SMX moiety) from the N-O bond cleavage pathway by UHPLC-LTQ-Orbitrap-MS/MS and effluent TOC variations confirmed the presence of electron donor competition between nitrate and SMX. SMX less than 1000 μg/L had a negligible influence on denitrification performance. Denitrifiers such as Azospira and Denitratisoma were still enriched after chronic exposure, and nosZ/narG positively correlated with sul1/sul2 resistance genes, which were both responsible for the negligible influence of SMX. This work could guide the operational management of denitrification biofilters for simultaneous nitrate and antibiotics removal.
Collapse
Affiliation(s)
- Zhongshuo Xu
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Siwen Ze
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| | - Xueting Chen
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| | - Xinshan Song
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| | - Yuhui Wang
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China.
| |
Collapse
|
12
|
Kong B, Jin L, Zhao Y, Huang H, Wang Y, Ren H. Adaptive Evolution Laws of Biofilm under Emerging Pollutant-Induced Stress: Community Assembly-Driven Structure Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10721-10732. [PMID: 37433138 DOI: 10.1021/acs.est.3c01899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The widely used biofilm process in advanced wastewater treatment is currently challenged by numerous exotic emerging pollutants (EPs), and the underlying principle of the challenge is the adaptive evolution laws of biofilm under EP stress. However, there is still a knowledge gap in exploration of the biofilm adaptive evolution theory. Herein, we comprehensively analyzed the morphological variation, community succession, and assembly mechanism of biofilms to report the mechanism underlying their adaptive evolution under sulfamethoxazole and carbamazepine stress for the first time. The ecological role of the dominant species was driven as a pioneer and assembly hub by EP stress, and the deterministic processes indicated the functional basis of the transformation. In addition, the characteristic responses of dispersal limitation and homogenizing dispersal adequately revealed the assembly pathways in adaptive evolution and the resulting structural variation. Therefore, the "interfacial exposure-structural variation-mass transfer feedback" mechanism was inferred to underly the adaptive evolution process of biofilms. Overall, this study highlighted the internal drivers of the adaptive evolution of the biofilm at the phylogenetic level and deepened our understanding of the mechanism of biofilm development under EP stress in advanced wastewater purification.
Collapse
Affiliation(s)
- Boning Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ying Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
13
|
Song T, Zhang X, Li J, Xie W, Dong W, Wang H. Sulfamethoxazole impact on pollutant removal and microbial community of aerobic granular sludge with filamentous bacteria. BIORESOURCE TECHNOLOGY 2023; 379:128823. [PMID: 36871701 DOI: 10.1016/j.biortech.2023.128823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
In this study, sulfamethoxazole (SMX) was employed to investigate its impact on the process of aerobic granule sludge with filamentous bacteria (FAGS). FAGS has shown great tolerance ability. FAGS in a continuous flow reactor (CFR) could keep stable with 2 μg/L of SMX addition during long-term operation. The NH4+, chemical oxygen demand (COD), and SMX removal efficiencies kept higher than 80%, 85%, and 80%, respectively. Both adsorption and biodegradation play important roles in SMX removal for FAGS. The extracellular polymeric substances (EPS) might play important role in SMX removal and FAGS tolerance to SMX. The EPS content increased from 157.84 mg/g VSS to 328.22 mg/g VSS with SMX addition. SMX has slightly affected on microorganism community. A high abundance of Rhodobacter, Gemmobacter, and Sphaerotilus of FAGS may positively correlate to SMX. The SMX addition has led to the increase in the abundance of the four sulfonamide resistance genes in FAGS.
Collapse
Affiliation(s)
- Tao Song
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Wanying Xie
- College of Civil Engineering and Architecture, Xinjiang University, Urumqi, Xinjiang 830017, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
14
|
Thakur K, Kuthiala T, Singh G, Arya SK, Iwai CB, Ravindran B, Khoo KS, Chang SW, Awasthi MK. An alternative approach towards nitrification and bioremediation of wastewater from aquaponics using biofilm-based bioreactors: A review. CHEMOSPHERE 2023; 316:137849. [PMID: 36642133 DOI: 10.1016/j.chemosphere.2023.137849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Aquaponics combines the advantages of aquaculture and hydroponics as it suits the urban environment where a lack of agricultural land and water resources is observed. It is an ecologically sound system that completely reuses its system waste as plant fertilizer. It offers sustainable water savings, making it a supreme technology for food production. The two major processes that hold the system together are nitrification and denitrification. The remains of fish in form of ammonia reach the bio filters where it is converted into nitrite and further into nitrate in presence of nitrifying and denitrifying bacteria. Nitrate eventually is taken up by the plants. However, even after the uptake from the flow stream, the effluent contains remaining ammonium and nitrates, which cannot be directly released into the environment. In this review it is suggested how integrating the biofilm-based bioreactors in addition to aquaculture and hydroponics eliminates the possibility of remains of total ammonia nitrogen [TAN] contents, leading to bioremediation of effluent water from the system. Effluent water after releasing from a bioreactor can be reused in an aquaculture system, conditions provided in these bioreactors promote the growth of required bacteria and encourages the mutual development of plants and fishes and eventually leading to bioremediation of wastewater from aquaponics.
Collapse
Affiliation(s)
- Kritika Thakur
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Tanya Kuthiala
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Chuleemas Boonthai Iwai
- Integrated Land and Water Resource Management Research and Development Center in Northeast Thailand, Khon Kaen University, Thailand; Department of Soil Science and Environment, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Kuan Shiong Khoo
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling, 712100, China.
| |
Collapse
|
15
|
Liu Q, Hou J, Zeng Y, Xia J, Miao L, Wu J. Integrated photocatalysis and moving bed biofilm reactor (MBBR) for treating conventional and emerging organic pollutants from synthetic wastewater: Performances and microbial community responses. BIORESOURCE TECHNOLOGY 2023; 370:128530. [PMID: 36574888 DOI: 10.1016/j.biortech.2022.128530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Increasing concern for emerging organic pollutants (e.g. antibiotics) urges improvements in conventional biological wastewater treatment processes. This study examined the performance of an integrated photocatalysis and moving bed biofilm reactor (MBBR) system in treating synthetic wastewater containing sulfamethoxazole (SMX). It was found that the integrated system could remove over 80.5 % of SMX and 67.7-80.7 % of chemical oxygen demand (COD) with a hydraulic retention time of 24 h. The introduction of photocatalysis had no impact on COD removal and significantly enhanced SMX removal. High-throughput analysis indicated that microbial community greatly altered due to photocatalytic oxidation stress, with clostridiaceae and enterobacteriaceae becoming dominant families. Nevertheless, microorganisms maintained metabolic activity, which may be ascribed to the protection of carriers and microbial self-preservation by secreting extracellular polymeric substances and antioxidant enzymes. Collectively, this study sheds light on treating wastewater containing conventional and emerging organic pollutants by integrating photocatalysis with MBBR.
Collapse
Affiliation(s)
- Qidi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuan Zeng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Jun Xia
- School of Civil Engineering and Transportation, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
16
|
Zhang B, He Y, Shi W, Liu L, Li L, Liu C, Lens PNL. Biotransformation of sulfamethoxazole (SMX) by aerobic granular sludge: Removal performance, degradation mechanism and microbial response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159771. [PMID: 36309264 DOI: 10.1016/j.scitotenv.2022.159771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Aerobic granular sludge (AGS) is a promising biotechnology for the treatment of antibiotic-rich wastewater. However, little is known about the antibiotics degradation mechanism and microbial response in a sulfamethoxazole (SMX)-loaded AGS system. Herein, the results of a continuous 240 days test suggested that 0.5-5 mg/L of SMX could be thoroughly removed by AGS via adsorption and degradation. The degradation pathway of SMX involved the hydrolysis of the sulfonamide bond and cleavage of NS or CS bonds, subsequently leading to the production of small molecular substances (e.g. benzene and 5-methyl-isoxazole). In terms of the AGS system, it exhibited a strong resistance to 0.5 mg/L of SMX, while 1 and 5 mg/L of SMX significantly inhibited the microbial growth, declined the nitrification efficiency, weakened the sludge settleability, and triggered the excessive growth of filamentous bacteria. Besides, the secretion of extracellular polymer substances was suppressed by 57.3% when increasing the SMX concentration from 0.5 to 5 mg/L, which was not conducive to the system stability. The long-term presence of SMX enhanced the proliferation of antibiotics resistance genes (sul1and sul2) and exerted a strong selection pressure on the microbial community, especially with Thiothrix being the dominating genus. Overall, this study elucidated that AGS qualified promising application prospects in the removal of SMX present in wastewater, but SMX at high concentrations posed great adverse impacts on the performance of the AGS system, which causes concern when treating SMX rich wastewaters.
Collapse
Affiliation(s)
- Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yuankai He
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Lanjin Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Lin Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chong Liu
- 101 Research Institute of Ministry of Civil Affairs, Beijing 100070, China
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2601, DA, Delft, the Netherlands
| |
Collapse
|
17
|
Li Y, Zhong W, Ning Z, Feng J, Niu J, Li Z. Effect of biochar on antibiotic resistance genes in the anaerobic digestion system of antibiotic mycelial dreg. BIORESOURCE TECHNOLOGY 2022; 364:128052. [PMID: 36191748 DOI: 10.1016/j.biortech.2022.128052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
To address the problem of antibiotic mycelial dreg (AMD) treatment and removal of antibiotic resistance genes (ARGs), this study adopted anaerobic digestion (AD) technology, and added biochar (BC) and biochar loaded with nanosized zero-valent iron (nZVI-BC) to promote the AD of AMD and enhance the removal of ARGs. Results showed that nZVI-BC was better than BC in promoting AD due to the hydrogen evolution corrosion and the synergistic effect of nZVI and BC. In addition, BC and nZVI-BC can enhance the oxidative stress response and reduce ammonia stress phenomenon, which significantly reduces the abundance of aadA, ant(2″)-Ⅰ, qacEdelta1 and sul1. In conclusion, the enhance effect of nZVI-BC is greater than BC. The removal efficiency rates of nZVI-BC on the above-mentioned four ARGs were improved by 33%, 9%, 24% and 11%.
Collapse
Affiliation(s)
- Yue Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Weizhang Zhong
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China.
| | - Zhifang Ning
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Jing Feng
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Agricultural Planning and Engineering, Beijing 100125, China
| | - Jianrui Niu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Zaixing Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| |
Collapse
|
18
|
Hu G, Fan S, Wang H, Ji B. Adaptation responses of microalgal-bacterial granular sludge to sulfamethoxazole. BIORESOURCE TECHNOLOGY 2022; 364:128090. [PMID: 36243257 DOI: 10.1016/j.biortech.2022.128090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The presence of widely used sulfamethoxazole (SMX) in wastewater poses a threat to aquatic organisms and humans. Here, the responses of the emerging microalgal-bacterial granular sludge (MBGS) process in treating SMX-containing wastewater were investigated. The results indicated that 1, 5 and 10 mg/L SMX had little effect on the removals of organics and nutrients after an acclimation period of three to five days. SMX reduced intracellular glycogen content of MBGS, while the production of chlorophyll and extracellular polymeric substances tended to be promoted. Furthermore, the potential mechanisms on how MBGS adapted to SMX were deciphered to be the alterations of microbial community structure and function of MBGS. SMX might be degraded intracellularly into a carbon source for microbial metabolism and the SMX degraders were suspected to be Scenedesmaceae, Rhodocyclaceae and Burkholderiaceae. This study suggests that the MBGS process can handle SMX-containing wastewater, advancing knowledge on MBGS for antibiotics degradation.
Collapse
Affiliation(s)
- Guosheng Hu
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Siqi Fan
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
19
|
Chen Y, Zhao YG, Wang X, Ji J. Impact of sulfamethoxazole and organic supplementation on mixotrophic denitrification process: Nitrate removal efficiency and the response of functional microbiota. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115818. [PMID: 35944321 DOI: 10.1016/j.jenvman.2022.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Recirculating aquaculture systems (RAS) effluent is characterized by low COD to total inorganic nitrogen ratio (C/N), excessive nitrate, and the presence of traces of antibiotics. Hence, it urgently needs to be treated before recycling or discharging. In this study, four denitrification bioreactors at increasing C/N ratios (0, 0.7, 2, and 5) were started up to treat mariculture wastewater under the sulfamethoxazole (SMX) stress, during which the bioreactors performance and the shift of mixotrophic microbial communities were explored. The result showed that during the SMX exposure, organic supplementation enhanced nitrate and thiosulfate removal, and eliminated nitrite accumulation. The denitrification rate was accelerated by increasing C/N from 0 to 2, while it declined at C/N of 5. The decline was ascribed to which SMX reduced the relative abundance of denitrifiers, but improved the capability of dissimilatory nitrogen reduction to ammonia (DNRA) and sulfide production. The direct evidence was the relative abundance of sulfidogenic populations, such as Desulfuromusa, Desulfurocapsa, and Desulfobacter increased under the SMX stress. Moreover, high SMX (1.5 mg L-1) caused the obvious accumulation of ammonia at C/N of 5 due to the high concentration of sulfide (3.54 ± 1.08 mM) and the enhanced DNRA process. This study concluded that the mixotrophic denitrification process with the C/N of 0.7 presented the best performance in nitrate and sulfur removal and indicated the maximum resistance to SMX.
Collapse
Affiliation(s)
- Yue Chen
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| | - Xiao Wang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| |
Collapse
|
20
|
Chen J, Gao M, Zhao Y, Guo L, Jin C, Ji J, She Z. Nitrogen and sulfamethoxazole removal in a partially saturated vertical flow constructed wetland treating synthetic mariculture wastewater. BIORESOURCE TECHNOLOGY 2022; 358:127401. [PMID: 35660456 DOI: 10.1016/j.biortech.2022.127401] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the removal of nitrogen and sulfamethoxazole (SMX), and the microbial communities in a partially saturated vertical flow constructed wetland (PS-VFCW) fed with synthetic mariculture wastewater operated at different saturated zone depths (SZDs), i.e. 51, 70, and 60 cm. Removal efficiencies were 99.8%-100.0% for COD, 34.1%-100.0% for NH4+-N, 67.8%-97.3% for total inorganic nitrogen (TIN), and 29.8%-57.2% for SMX. Excellent nitrification performance was achieved at the SZDs of 51 and 60 cm. Denitrification performed well at 70 and 60 cm SZDs. The highest TIN removal efficiency (97.3%) was achieved as the SZD was 60 cm. SMX removal was significantly influenced by SZD and was promoted by higher SZD. The removal of organics, nitrogen, and SMX mainly occurred in the unsaturated zone. Ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, and SMX-degrading bacteria were detected in the unsaturated and saturated zones, and showed an increasing trend in abundance along the depth.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| |
Collapse
|