1
|
Kuzukiran O, Yurdakok-Dikmen B, Uyar R, Turgut-Birer Y, Çelik HT, Simsek I, Karakas-Alkan K, Boztepe UG, Ozyuncu O, Kanca H, Ozdag H, Filazi A. Transcriptomic evaluation of metals detected in placenta. CHEMOSPHERE 2024; 363:142929. [PMID: 39048050 DOI: 10.1016/j.chemosphere.2024.142929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This research aims to assess the concentration of metals in human and canine placentas from the same geographic area and to investigate how these metal levels influence gene expression within the placenta. Placentas of 25 dogs and 60 women who had recently given birth residing in Ankara, Turkey were collected and subjected to metal analysis using ICP-OES. Placentas with detectable metal levels underwent further examination including Next Generation Sequencing, transcriptional analysis, single nucleotide polymorphism investigation, and extensive scrutiny across various groups. For women, placentas with concurrent detection of aluminum (Al), lead (Pb), and cadmium (Cd) underwent transcriptomic analysis based on metal analysis results. However, the metal load in dog placentas was insufficient for comparison. Paired-end sequencing with 100-base pair read lengths was conducted using the DNBseq platform. Sequencing quality control was evaluated using FastQC, fastq screen, and MultiQC. RNA-sequencing data is publicly available via PRJNA936158. Comparative analyses were performed between samples with detected metals and "golden" samples devoid of these metals, revealing significant gene lists and read counts. Normalization of read counts was based on estimated size factors. Principal Component Analysis (PCA) was applied to all genes using rlog-transformed count data. Results indicate that metal exposure significantly influences placental gene expression, impacting various biological processes and pathways, notably those related to protein synthesis, immune responses, and cellular structure. Upregulation of immune-related pathways and alterations in protein synthesis machinery suggest potential defense mechanisms against metal toxicity. Nonetheless, these changes may adversely affect placental function and fetal health, emphasizing the importance of monitoring and mitigating environmental exposure to metals during pregnancy.
Collapse
Affiliation(s)
- Ozgur Kuzukiran
- Cankiri Karatekin University, Eldivan Vocational School of Health Sciences, Veterinary Department, Cankiri, Turkey.
| | - Begum Yurdakok-Dikmen
- Ankara University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 06070, Ankara, Turkey.
| | - Recep Uyar
- Ankara University, The Stem Cell Institute, Ankara, Turkey; Ankara University, Graduate School of Health Sciences, 06070, Ankara, Turkey.
| | - Yagmur Turgut-Birer
- Ankara University, Graduate School of Health Sciences, 06070, Ankara, Turkey.
| | - Hasan Tolga Çelik
- Hacettepe University, Faculty of Medicine, Department of Child Health and Diseases, Section of Neonatology, 06230, Altindag, Ankara, Turkey.
| | - Ilker Simsek
- Cankiri Karatekin University, Eldivan Vocational School of Health Sciences, Cankiri, Turkey.
| | - Kubra Karakas-Alkan
- Selcuk University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynaecology, Konya, Turkey.
| | - Ummu Gulsum Boztepe
- Ankara University, Graduate School of Health Sciences, 06070, Ankara, Turkey.
| | - Ozgur Ozyuncu
- Hacettepe University, Faculty of Medicine, Department of Obstetrics and Gynaecology, 06230, Altindag, Ankara, Turkey.
| | - Halit Kanca
- Ankara University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynaecology, Ankara, Turkey.
| | - Hilal Ozdag
- Ankara University Biotechnology Institute, 06135, Ankara, Turkey.
| | - Ayhan Filazi
- Ankara University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 06070, Ankara, Turkey.
| |
Collapse
|
2
|
Uyar R, Turgut Y, Çelik HT, Ünal MA, Kuzukıran Ö, Özyüncü Ö, Ceylan A, Çinar ÖÖ, Boztepe ÜG, Özdağ H, Filazi A, Yurdakök-Di Kmen B. Effects of DDT and DDE on placental cholinergic receptors. Reprod Toxicol 2024; 126:108588. [PMID: 38615785 DOI: 10.1016/j.reprotox.2024.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
The placental cholinergic system; known as an important factor in intracellular metabolic activities, regulation of placental vascular tone, placental development, and neurotransmission; can be affected by persistent organic pesticides, particularly organochlorine pesticides(OCPs), which can influence various epigenetic regulations and molecular pathways. Although OCPs are legally prohibited, trace amounts of the persistent dichlorodiphenyltrichloroethane(DDT) are still found in the environment, making prenatal exposure inevitable. In this study, the effects of 2,4'-DDT and 4,4'-DDT; and its breakdown product 4,4'-DDE in the environment on placental cholinergic system were evaluated with regards to cholinergic genes. 40 human placentas were screened, where 42,50% (17 samples) were found to be positive for the tested compounds. Average concentrations were 10.44 μg/kg; 15.07 μg/kg and 189,42 μg/kg for 4,4'-DDE; 2,4'-DDT and 4,4'-DDT respectively. RNA-Seq results revealed 2396 differentially expressed genes in positive samples; while an increase in CHRM1,CHRNA1,CHRNG and CHRNA2 genes at 1.28, 1.49, 1.59 and 0.4 fold change were found(p<0028). The increase for CHRM1 was also confirmed in tissue samples with immunohistochemistry. In vitro assays using HTR8/SVneo cells; revealed an increase in mRNA expression of CHRM1, CHRM3 and CHRN1 in DDT and DDE treated groups; which was also confirmed through western blot assays. An increase in the expression of CHRM1,CHRNA1, CHRNG(p<0001) and CHRNA2(p<0,05) were found from the OCPs exposed and non exposed groups.The present study reveals that intrauterine exposure to DDT affects the placental cholinergic system mainly through increased expression of muscarinic receptors. This increase in receptor expression is expected to enhance the sensitivity of the placental cholinergic system to acetylcholine.
Collapse
Affiliation(s)
- Recep Uyar
- Ankara University, Graduate School of Health Sciences, Ankara 06070, Turkiye.
| | - Yağmur Turgut
- Ankara University, Graduate School of Health Sciences, Ankara 06070, Turkiye
| | - H Tolga Çelik
- Hacettepe University, Faculty of Medicine, Department of Child Health and Diseases, Section of Neonatology, Altindag, Ankara 06230, Turkey
| | - M Altay Ünal
- Ankara University, Institute of Stem Cell, Ankara 06520, Turkey
| | - Özgür Kuzukıran
- Çankırı Karatekin University, Eldivan Vocational School of Health Sciences, Veterinary Department, Çankırı, Turkey
| | - Özgür Özyüncü
- Hacettepe University, Faculty of Medicine, Department of Obstetrics and Gynaecology, Altindag, Ankara 06230, Turkey
| | - Ahmet Ceylan
- Ankara University Faculty of Veterinary Medicine Department of Histology and Embryology, Ankara 06070, Turkey
| | - Özge Özgenç Çinar
- Ankara University Faculty of Veterinary Medicine Department of Histology and Embryology, Ankara 06070, Turkey
| | - Ümmü Gülsüm Boztepe
- Ankara University, Graduate School of Health Sciences, Ankara 06070, Turkiye
| | - Hilal Özdağ
- Ankara University Biotechnology Institute, Ankara 06135, Turkey
| | - Ayhan Filazi
- Ankara University Faculty of Veterinary Medicine Department of Pharmacology and Toxicology, Ankara 06070, Turkey
| | - Begüm Yurdakök-Di Kmen
- Ankara University Faculty of Veterinary Medicine Department of Pharmacology and Toxicology, Ankara 06070, Turkey
| |
Collapse
|
3
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
4
|
Dai Y, Xu X, Huo X, Faas MM. Effects of polycyclic aromatic hydrocarbons (PAHs) on pregnancy, placenta, and placental trophoblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115314. [PMID: 37536008 DOI: 10.1016/j.ecoenv.2023.115314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants that are carcinogenic, mutagenic, endocrine-toxic, and immunotoxic. PAHs can be found in maternal and fetal blood and in the placenta during pregnancy. They may thus affect placental and fetal development. Therefore, the exposure levels and toxic effects of PAHs in the placenta deserve further study and discussion. This review aims to summarize current knowledge on the effects of PAHs and their metabolites on pregnancy and birth outcomes and on placental trophoblast cells. A growing number of epidemiological studies detected PAH-DNA adducts as well as the 16 high-priority PAHs in the human placenta and showed that placental PAH exposure is associated with adverse fetal outcomes. Trophoblasts are important cells in the placenta and are involved in placental development and function. In vitro studies have shown that exposure to either PAH mixtures, benzo(a)pyrene (BaP) or BaP metabolite benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) affected trophoblast cell viability, differentiation, migration, and invasion through various signaling pathways. Furthermore, similar effects of BPDE on trophoblast cells could also be observed in BaP-treated mouse models and were related to miscarriage. Although the current data show that PAHs may affect placental trophoblast cells and pregnancy outcomes, further studies (population studies, in vitro studies, and animal studies) are necessary to show the specific effects of different PAHs on placental trophoblasts and pregnancy outcomes.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
5
|
Pizzi G, Mazzola SM, Pecile A, Bronzo V, Groppetti D. Tobacco Smoke Exposure in Pregnant Dogs: Maternal and Newborn Cotinine Levels: A Pilot Study. Vet Sci 2023; 10:vetsci10050321. [PMID: 37235404 DOI: 10.3390/vetsci10050321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Active and passive smoking in pregnant women is associated with perinatal morbidity and mortality risk, including abortion, preterm birth, low birthweight, and malformations. No data are available on intrauterine exposure to smoking during pregnancy in dogs. This study aimed to fill this gap by exploring the detectability and quantity of cotinine, the major metabolite of nicotine, in maternal (serum and hair) and newborn (amniotic fluid and hair) biospecimens collected at birth in dogs. For this purpose, twelve pregnant bitches, six exposed to the owner's smoke and six unexposed, were enrolled. A further six non-pregnant bitches exposed to passive smoke were included to investigate the role of pregnancy status on cotinine uptake. Exposed dogs, dams, and puppies had greater cotinine concentrations than unexposed ones. Although without statistical significance, serum and hair cotinine concentrations were higher in pregnant compared to non-pregnant bitches, suggesting a different sensitivity to tobacco smoke exposure during gestation. The present results provide evidence for cotinine transplacental passage in the dog. It is conceivable that fragile patients such as pregnant, lactating, and neonate dogs may be more susceptible to the harmful effects of second-hand smoke exposure. Owners should be sensitized to the risk of smoke exposure for their pets.
Collapse
Affiliation(s)
- Giulia Pizzi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Silvia Michela Mazzola
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Alessandro Pecile
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Valerio Bronzo
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Debora Groppetti
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|