1
|
Pyo M, Kim D, Kim HS, Hwang MH, Lee S, Lee EJ. Sulfur powder utilization and denitrification efficiency in an elemental sulfur-based membrane bioreactor with coagulant addition. WATER RESEARCH 2024; 272:122882. [PMID: 39674135 DOI: 10.1016/j.watres.2024.122882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
The integration of elemental sulfur-based autotrophic denitrification with membrane bioreactor (MBR) technology offers a cost-effective solution for nitrate removal; however, stable operation demands efficient sulfur utilization and phosphorus management. This study explores sulfur consumption dynamics and the impacts of coagulant injection on denitrification efficiency. Sulfur consumption was closely correlated with nitrate removal rates, highlighting the critical role of stoichiometric sulfur availability for sustained denitrification. While coagulant addition enhanced phosphorus removal, excessive dosing impaired elemental sulfur-based microbial activity, reducing nitrate removal efficiency and increasing nitrite accumulation. Notably, microbial community analysis revealed a decline in the abundance of key sulfur-oxidizing bacteria, such as Sulfurimonas, under high coagulant concentrations. These findings emphasize the need for optimized sulfur and coagulant dosing strategies to balance phosphorus and nitrate removal while preserving microbial diversity and reactor stability. This study provides practical insights into operational parameters for efficient and sustainable ESAD-MBR processes.
Collapse
Affiliation(s)
- Minsu Pyo
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea; Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440746, Republic of Korea
| | - Dongyeon Kim
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea
| | - Hyung Soo Kim
- Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440746, Republic of Korea
| | - Moon-Hyun Hwang
- Institute of Conversions Science, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea
| | - Sangyoup Lee
- Institute of Conversions Science, Korea University, 145, Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea.
| | - Eui-Jong Lee
- Department of Environmental Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan-si, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
2
|
Xia Y, Zhang S, Tang X, Yan B, Zheng H. Selective adsorption of methylene blue dye by a flocculation sludge-derived adsorbent prepared by carboxymethyl chitosan-based flocculants. Int J Biol Macromol 2024; 278:134997. [PMID: 39181349 DOI: 10.1016/j.ijbiomac.2024.134997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The flocculation of dyeing wastewater generated a large amount of sludge that was often disposed as refractory hazardous waste. The resource utilization of flocculation sludge was of great significance in terms of low treatment cost of sludge, low environmental risk and high usage efficiency of reactive dyes. Herein, a flocculation sludge-derived (FSD) adsorbent was prepared via cross-linking of flocculation sludge yielding by carboxymethyl chitosan-based flocculants and dyes. FSD adsorbent had excellent selective adsorption performance for methylene blue (MB) treatment. The highest removal rate of MB and adsorption capacity of FSD adsorbent were 96.48 % and 354.7066 mg/g, attributing to its rich functional groups, negative charges and special micropore structure. FSD adsorbent owned the favorable regeneration efficiency and stability. Its removal rate of MB was still above 71.8 % after 6 regeneration-adsorption cycles. Its leaching rate of dyes was only 0.0016 mg/mg that was rather lower than common dried flocculation sludge. The adsorption processes of FSD adsorbent were complex in accordance with its characteristics, adsorption isotherms, adsorption kinetics and theoretical calculation. Multiple adsorption mechanisms were present in the treatment of dyeing wastewater by FSD adsorbent. The resource utilization of flocculation sludge, as adsorbents, was a potential candidate in field application.
Collapse
Affiliation(s)
- Yuhan Xia
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Shixin Zhang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Xiaomin Tang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, PR China.
| | - Bin Yan
- Graduate School, University of Chinese Academy of Social Sciences, Beijing 102488, PR China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
3
|
Al-Hazmi HE, Hassan GK, Kurniawan TA, Śniatała B, Joseph TM, Majtacz J, Piechota G, Li X, El-Gohary FA, Saeb MR, Mąkinia J. Technological solutions to landfill management: Towards recovery of biomethane and carbon neutrality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120414. [PMID: 38412730 DOI: 10.1016/j.jenvman.2024.120414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt.
| | | | - Bogna Śniatała
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, Toruń, 87-100, Poland
| | - Xiang Li
- School of Environmental Science & Engineering, Donghua Univerisity, Dept Env. Room 4155, 2999 North Renmin Rd, Songjiang District, Shanghai, China
| | - Fatma A El-Gohary
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416, Gdańsk, Poland
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| |
Collapse
|
4
|
Li M, Chen Z, Zhou D, Xu S, Qiu S, Ge S. Coagulation pretreatment coupled with indigenous microalgal-bacterial consortium system for on-site treatment of rural black wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169728. [PMID: 38160812 DOI: 10.1016/j.scitotenv.2023.169728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Improper treatment of rural black wastewater (RBW) presents substantial challenges, including the wastage of resource, environmental contamination, and economic consequences. This study proposed an integrated process for RBW treatment, consisting of coagulation/flocculation (C/F) pretreatment and subsequent inoculation of indigenous microalgal-bacterial consortium (IMBC) for nitrogen recovery, namely C/F-IMBC process. Specifically, the optimal C/F conditions (polyaluminium chloride of 4 g/l, polyacrylamide of 50 mg/l, and pH of 6) were determined through a series of single-factor experiments, considering CN, turbidity, and dissolved organic matter (DOM) removal, economic cost, and potential influence on the water environment. Compared to the sole IMBC system for RBW treatment, the proposed C/F-IMBC process exhibited a remarkable 1.23-fold increase in microalgal growth and a substantial 17.6-22.6 % boost in nitrogen recovery. The altered RBW characteristic induced by C/F pretreatment was supposed to be responsible for the improved system performance. In particular, the abundance of DOM was decreased and its composition was simplified after C/F pretreatment, based on the analysis for excitation-emission matrices with parallel factor and gas chromatography-mass spectrometry, thus eliminating the potential impacts of toxic DOM components (e.g., Bis(2-ethylhexyl) phthalate) on IMBC activity. It should also be noted that C/F pretreatment modified microbial community structure as well, thereby regulating the expression of nitrogen-related genes and enhancing the system nitrogen recovery capacity. For instance, the functional Cyanobacteria responsible for nutrient recovery was enriched by 1.95-fold and genes involved in the assimilatory nitrate reduction to ammonia pathway were increased by 1.52-fold. These fundamental findings are expected to offer insights into the improvement of DOM removal and nitrogen recovery for IMBC-based wastewater treatment system, and provide valuable guidance for the development of sustainable on-site RBW treatment technologies.
Collapse
Affiliation(s)
- Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Di Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
5
|
Chen H, Xu H, Zhong C, Liu M, Yang L, He J, Sun Y, Zhao C, Wang D. Treatment of landfill leachate by coagulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169294. [PMID: 38110093 DOI: 10.1016/j.scitotenv.2023.169294] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Landfill leachate is a seriously polluted and hazardous liquid, which contains a high concentration of refractory organics, ammonia nitrogen, heavy metals, inorganic salts, and various suspended solids. The favorable disposal of landfill leachate has always been a hot and challenging issue in wastewater treatment. As one of the best available technologies for landfill leachate disposal, coagulation has been studied extensively. However, there is an absence of a systematic review regarding coagulation in landfill leachate treatment. In this paper, a review focusing on the characteristics, mechanisms, and application of coagulation in landfill leachate treatment was provided. Different coagulants and factors influencing the coagulation effect were synthetically summarized. The performance of coagulation coupled with other processes and their complementary advantages were elucidated. Additionally, the economic analysis conducted in this study suggests the cost-effectiveness of the coagulation process. Based on previous studies, challenges and perspectives met by landfill leachate coagulation treatment were also put forward. Overall, this review will provide a reference for the coagulation treatment of landfill leachate and promote the development of efficient and eco-friendly leachate treatment technology.
Collapse
Affiliation(s)
- Hongni Chen
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Hui Xu
- Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China
| | - Chao Zhong
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Mingjie Liu
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Liwei Yang
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Jiaojie He
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Yan Sun
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Chuanliang Zhao
- School of Civil Engineering, Chang'an University, Xi'an 710061, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Yuan Q, Huang Y, Chi J, Wu W, Qi E. Effective treatment of leachate concentrate from waste incineration plant by combination of coagulation and direct contact evaporation. CHEMOSPHERE 2024; 349:140880. [PMID: 38061564 DOI: 10.1016/j.chemosphere.2023.140880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
In order to verify that coagulation as pre-treatment can reduce the temperature of the hot air used for direct contact evaporating the leachate concentrate (LC) and low-grade waste heat such as exhaust steam in the waste incineration plant can be used to evaporate the LC. The supernatants after coagulation using polymerized ferrous sulfate (PFS), polymeric-aluminum (PAC), polymeric silicate aluminum ferric (PSAF) and poly-aluminum ferric chloride (PAFC) as coagulants were further treated in a lab-scale direct contact evaporation system. The results showed that the best performance with removal efficiencies of COD and NH3-N of 58.70% and 29.09% was achieved after coagulation when PAFC dosage = 15 g/L, PAM dosage = 30 mg/L and initial pH of supernatant = 6. After coagulation, a large amount of the fulvic-like acid and aromatic heterocyclic compounds were removed and the degree of complexity and aromaticity of organics decreased. After direct contact evaporation, using PAFC as coagulant still was the best selection due to its lowest concentrations of COD and NH3-N (22 mg/L and 1.02 mg/L) in the condensate produced by this two-stage treatment when initial pH of supernatant was 6 during evaporation and the condensate produced by this two-stage treatment met the water quality standard for using as supplying water for circulating cooling water system when temperature of hot air used for heating LC was at low temperature (250 °C). The fulvic-like acid and aromatic heterocyclic compounds in the condensate continuously reduced. Phenol, adamantane, 1-isocyanato, phthalic anhydrid, tri(2-chloroethyl) phosphat, Heptadecane, 2-methyl, ginsenol and Octadecane, 2-methyl- in the condensate obviously decreased. The effect of four coagulants as pretreatment on reducing the temperature of hot air used for evaporating LC was ranked as PAFC > PFS > PAC > PSAF. PSAF was not recommended due to the large amount of NH3-N produced when using PSAF to treat the LC.
Collapse
Affiliation(s)
- Qi Yuan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China; Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210019, China
| | - Yaji Huang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Jianzhou Chi
- Nanjing Linpu Thermal Energy Technology Co., Ltd, Nanjing, 210019, China
| | - Wei Wu
- Nanjing Environment Group Co., Ltd, Nanjing, 210026, China
| | - Erbing Qi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
7
|
Tian Y, Wang H, Xu G, Tu Y, Zhang Y, Zhang W, Liang Y, Li A, Xie X, Peng Z, Wang Y, Xie X. Novel covalently bound organic silicon-ferrum hybrid coagulant with excellent coagulation performance and bacteriostatic ability. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Effect of Fulvic Acid in Landfill Leachate Membrane Concentrate on Evaporation Process. Processes (Basel) 2022. [DOI: 10.3390/pr10081592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Landfill leachate membrane concentrate (LLMC) poses risks to the environment and is commonly treated by evaporation. As the main component of the dissolved organic matter in LLMC, fulvic acid (FA) was selected as a representative to investigate its effect on evaporation and the removal efficiency by pretreatment in this study. According to the water quality indexes and three-dimensional fluorescence spectra of LLMC samples collected from five landfills in China, the concentration of total organic carbon in LLMC was 700–2500 mg·L−1, in which FA accounted for 50–85%. The boiling point and viscosity of the configured FA-NaCl-Na2SO4 solution both increased significantly when FA was concentrated 20 times (approximately 30,000 mg·L−1). Due to the presence of FA, the violent frothing phenomenon appeared at above 70 °C in evaporation, and the solubility of CaSO4·2H2O in FA-NaCl-Na2SO4 solution was significantly lower than that without FA. All these results indicated that the high FA concentration in LLMC could lead to decreased heat transfer coefficient and evaporation capacity during evaporation. Therefore, the softening pretreatment including the addition of Ca(OH)2, Na2CO3, and coagulants was employed to reduce the hardness and FA concentration. After the softening experiments, the removal efficiency of FA was >95% for the configured LLMC sample, while for the actual LLMC sample collected from landfills, the removal efficiency of FA and chemical oxygen demand could reach >80% and about 30%, respectively. The remaining concentration of FA in LLMC was about 200 mg·L−1, and the recovery efficiency of clean water could be 90% in the evaporation process. This research has important guiding significance for the evaporation treatment of LLMC.
Collapse
|