1
|
Einaga H, Zheng X. Fundamental insights and recent advances in catalytic oxidation processes using ozone for the control of volatile organic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43540-43560. [PMID: 38909152 DOI: 10.1007/s11356-024-34004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
The development of technologies for highly efficient treatment of emissions containing low concentrations of volatile organic compounds (VOCs) remains an important challenge. Catalytic oxidation with ozone (catalytic ozonation) is useful for the oxidative decomposition of VOCs, particularly aromatic compounds, under ambient temperature conditions. Only inexpensive transition metal oxides are required as catalysts, and Mn-based catalysts are widely used for catalytic ozonation. This review describes the oxidation reaction mechanisms, reaction pathways of aromatic hydrocarbons, and dependence of the catalytic ozonation activity on the reaction conditions. The reasons why Mn oxides are effective in catalytic ozonation are also explained. The structure of the catalytic active sites and the types of supporting materials contributing to the reaction are also discussed in detail, with the aim of establishing a VOC control technology. In addition, recent progress in catalytic oxidation processes using ozone as an oxidant has been outlined, focusing on catalyst materials and reaction conditions.
Collapse
Affiliation(s)
- Hisahiro Einaga
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan.
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan.
| | - Xuerui Zheng
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
2
|
Baskaran D, Dhamodharan D, Behera US, Byun HS. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds. ENVIRONMENTAL RESEARCH 2024; 251:118472. [PMID: 38452912 DOI: 10.1016/j.envres.2024.118472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Volatile organic compounds (VOCs) are harmful pollutants emitted from industrial processes. They pose a risk to human health and ecosystems, even at low concentrations. Controlling VOCs is crucial for good air quality. This review aims to provide a comprehensive understanding of the various methods used for controlling VOC abatement. The advancement of mono-functional treatment techniques, including recovery such as absorption, adsorption, condensation, and membrane separation, and destruction-based methods such as natural degradation methods, advanced oxidation processes, and reduction methods were discussed. Among these methods, advanced oxidation processes are considered the most effective for removing toxic VOCs, despite some drawbacks such as costly chemicals, rigorous reaction conditions, and the formation of secondary chemicals. Standalone technologies are generally not sufficient and do not perform satisfactorily for the removal of hazardous air pollutants due to the generation of innocuous end products. However, every integration technique complements superiority and overcomes the challenges of standalone technologies. For instance, by using catalytic oxidation, catalytic ozonation, non-thermal plasma, and photocatalysis pretreatments, the amount of bioaerosols released from the bioreactor can be significantly reduced, leading to effective conversion rates for non-polar compounds, and opening new perspectives towards promising techniques with countless benefits. Interestingly, the three-stage processes have shown efficient decomposition performance for polar VOCs, excellent recoverability for nonpolar VOCs, and promising potential applications in atmospheric purification. Furthermore, the review also reports on the evolution of mathematical and artificial neural network modeling for VOC removal performance. The article critically analyzes the synergistic effects and advantages of integration. The authors hope that this article will be helpful in deciding on the appropriate strategy for controlling interested VOCs.
Collapse
Affiliation(s)
- Divya Baskaran
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai-600077, India
| | - Duraisami Dhamodharan
- Interdisciplinary Research Centre for Refining and Advanced Chemicals, King Fahd, University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Uma Sankar Behera
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea.
| |
Collapse
|
3
|
Liu L, Wu N, Ouyang M, Xing Y, Tian J, Chen P, Wu J, Hu Y, Niu X, Fu M, Ye D. Enhancement Effect Induced by the Second Metal to Promote Ozone Catalytic Oxidation of VOCs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6725-6735. [PMID: 38565876 DOI: 10.1021/acs.est.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
It is a promising research direction to develop catalysts with high stability and ozone utilization for low-temperature ozone catalytic oxidation of VOCs. While bimetallic catalysts exhibit excellent catalytic activity compared with conventional single noble metal catalysts, limited success has been achieved in the influence of the bimetallic effect on the stability and ozone utilization of metal catalysts. Herein, it is necessary to systematically study the enhancement effect in the ozone catalytic reaction induced by the second metal. With a simple continuous impregnation method, a platinum-cerium bimetallic catalyst is prepared. Also highlighted are studies from several aspects of the contribution of the second metal (Ce) to the stability and ozone utilization of the catalysts, including the "electronic effect" and "geometric effect". The synergistic removal rate of toluene and ozone is nearly 100% at 30 °C, and it still shows positive stability after high humidity and a long reaction time. More importantly, the instructive significance, which is the in-depth knowledge of enhanced catalytic mechanism of bimetallic catalysts resulting from a second metal, is provided by this work.
Collapse
Affiliation(s)
- Lei Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ning Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ming Ouyang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yun Xing
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Juntai Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| | - Junliang Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| |
Collapse
|
4
|
Li Y, Fu M, Zhang X, He C, Chen D, Xiong Y, Guo L, Tian S. Enhanced catalytic ozonation performance by CuO x nanoclusters/TiO 2 nanotube and an insight into the catalytic mechanism. J Colloid Interface Sci 2023; 651:589-601. [PMID: 37562301 DOI: 10.1016/j.jcis.2023.07.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Highly reactive nanoclusters of metal oxides are extremely difficult to be synthesized due to their thermodynamic instability. For the first time, CuOx nanoclusters supported on anatase TiO2 nanotubes (NT) with many defects as anchoring sites were successfully prepared. Although the copper loading reached as high as 2.5 %, the size of CuOx nanoclusters in the sample of 2.5 %CuOx/NT were mainly around 1.0 nm. The aggregation of copper species during the calcination process was undoubtedly hampered by the anchoring effects of the abundant defects in NT support. Due to the highly exposed undercoordinated atoms of CuOx nanoclusters, the mixed valences of copper, and the strong interface interaction between CuOx nanoclusters and NT support, 2.5 %CuOx/NT-catalyzed ozonation showed the highest pseudo-first-order reaction rate constant of 8.5 × 10-2 min-1, 2.2 and 4.0 times that of NT-catalyzed ozonation and ozonation alone, respectively. Finally, the catalytic mechanism was revealed by both experiments and density functional theory calculations (DFT). The results demonstrated that the undercoordinated Cu in CuOx/NT could highly promote the adsorption of ozone with a high adsorption energy of -125.16 eV and the adsorbed ozone was activated immediately, tending to dissociate into a O2 molecule and a surface O atom. Thus, abundant reactive oxygen species, e.g., hydroxyl radical (·OH), superoxide radical (·O2-) and singlet oxygen (1O2), could be generated via chain reactions. Especially, ·OH mainly contributed to the removal of ibuprofen pollutants. This work sheds a light on the design and preparation of highly reactive nanoclusters of metal oxide catalysts for catalytic ozonation of refractory organic pollutants.
Collapse
Affiliation(s)
- Yiqing Li
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Manqin Fu
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaoxia Zhang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chun He
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China
| | - Dingsheng Chen
- Guangdong Province Engineering Laboratory for Air Pollution Control, South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environmental (MEE), Guangzhou 510655, PR China
| | - Ya Xiong
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China
| | - Liqing Guo
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China
| | - Shuanghong Tian
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China.
| |
Collapse
|
5
|
Zhao R, Wang H, Zhao D, Liu R, Liu S, Fu J, Zhang Y, Ding H. Review on Catalytic Oxidation of VOCs at Ambient Temperature. Int J Mol Sci 2022; 23:ijms232213739. [PMID: 36430218 PMCID: PMC9697337 DOI: 10.3390/ijms232213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
As an important air pollutant, volatile organic compounds (VOCs) pose a serious threat to the ecological environment and human health. To achieve energy saving, carbon reduction, and safe and efficient degradation of VOCs, ambient temperature catalytic oxidation has become a hot topic for researchers. Firstly, this review systematically summarizes recent progress on the catalytic oxidation of VOCs with different types. Secondly, based on nanoparticle catalysts, cluster catalysts, and single-atom catalysts, we discuss the influence of structural regulation, such as adjustment of size and configuration, metal doping, defect engineering, and acid/base modification, on the structure-activity relationship in the process of catalytic oxidation at ambient temperature. Then, the effects of process conditions, such as initial concentration, space velocity, oxidation atmosphere, and humidity adjustment on catalytic activity, are summarized. It is further found that nanoparticle catalysts are most commonly used in ambient temperature catalytic oxidation. Additionally, ambient temperature catalytic oxidation is mainly applied in the removal of easily degradable pollutants, and focuses on ambient temperature catalytic ozonation. The activity, selectivity, and stability of catalysts need to be improved. Finally, according to the existing problems and limitations in the application of ambient temperature catalytic oxidation technology, new prospects and challenges are proposed.
Collapse
Affiliation(s)
- Rui Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Han Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Rui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shejiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jianfeng Fu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Correspondence:
| |
Collapse
|