1
|
Zuo Q, Lin L, Zhang Y, Ommati MM, Wang H, Zhao J. The Footprints of Mitochondrial Fission and Apoptosis in Fluoride-Induced Renal Dysfunction. Biol Trace Elem Res 2024; 202:4125-4135. [PMID: 38057486 DOI: 10.1007/s12011-023-03994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Fluoride (F) is widely distributed in the environment and poses serious health risks to humans and animals. Although a good body of literature demonstrates a close relationship between F content and renal system performance, there is no satisfactory information on the involved intracellular routes. Hence, this study used histopathology and mitochondrial fission to explore fluorine-induced nephrotoxicity further. For this purpose, mice were exposed to the F ion (0, 25, 50, 100 mg/L) for 90 days. The effects of different F levels on renal pathomorphology and ion metabolism were assessed using hematoxylin and eosin (H&E), periodic acid-Schiff stain (PAS), periodic acid-silver methenamine (PASM), Prussian blue (PB), and alkaline phosphatase (ALP) staining. The results showed that F could lead to glomerular atrophy, tubular degeneration, and vacuolization. Meanwhile, F also could increase glomerular and tubular glycoproteins; made thickening of the renal capsule membrane and thickening of the tubular basement membrane; led to the accumulation of iron ions in the tubules; and increased in glomerular alp and decreased tubular alp. Concomitantly, IHC results showed that F significantly upregulated the expression levels of mitochondrial fission-related proteins, including mitochondrial fission factor (Mff), fission 1 (Fis1), and mitochondrial dynamics proteins of 49 kDa (MiD49) and 51 kDa (MiD51), ultimately caused apoptosis. To sum up, excessive fluorine has a strong nephrotoxicity effect, disrupting the balance of mitochondrial fission and fusion, interfering with the process of mitochondrial fission, and then causing damage to renal tissue structure and apoptosis.
Collapse
Affiliation(s)
- Qiyong Zuo
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Lin Lin
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Yuling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Hongwei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
2
|
Ma X, Lu C, Gao J, Cao J, Wan Y, Fang H. Sustainability of new energy vehicles from a battery recycling perspective: A bibliometric analysis. Heliyon 2024; 10:e33800. [PMID: 39027595 PMCID: PMC11255506 DOI: 10.1016/j.heliyon.2024.e33800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
In recent years, new energy vehicles (NEVs) have taken the world by storm. A large number of NEV batteries have been scrapped, and research on NEV battery recycling is important for promoting the sustainable development of NEVs. Battery recycling is an important aspect of the sustainable development of NEVs. In this study, we conducted an in-depth analysis of the current status of research on NEV battery recycling from a new perspective using bibliometric methods and visualization software. This study shows that research targeting the recycling of NEV batteries is growing rapidly, and collaborative networks exist among researchers from different countries, institutions, and fields. The focus of research has shifted from lead-acid batteries to lithium batteries, and the supply chain and circular economy related to NEV battery recycling is an emerging research hotspot. Based on our analysis, we propose that the government should establish policies to improve the recycling networks at the collection stage and provide subsidies to attract consumers. Enterprises should develop low-cobalt and cobalt-free technologies, utilize green solvents, and develop new battery swap modes. The establishment of an information platform is conducive to the further development of collaborative networks.
Collapse
Affiliation(s)
- Xiuyan Ma
- School of Management, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Chunxia Lu
- School of Management, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jiawei Gao
- Business School, Hitotsubashi University, Tokyo, 1860004, Japan
| | - Jian Cao
- School of Management, Zhejiang University of Technology, Hangzhou, 310023, China
- Center for Global & Regional Environmental Research, The University of Iowa, Iowa City, 52242, United States
| | - Yuehua Wan
- Library, Zhejiang University of Technology, Hangzhou, 310023, China
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Hui Fang
- Library, Zhejiang University of Technology, Hangzhou, 310023, China
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, 310023, China
| |
Collapse
|
3
|
Chen B, Liu X, Wu S, Hou J, Shang P, Chamba Y, Mehmood K, Fouad D, Li Y, Zhang H. Inhalation of ammonia promotes apoptosis and induces autophagy in hepatocytes via Bax/BCl-2 and m-TOR/ATG5/LC-3bII axes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169036. [PMID: 38061639 DOI: 10.1016/j.scitotenv.2023.169036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
Ammonia (NH3) is an irritating gas and atmospheric pollutant that endangers the health of humans and animals by stimulating respiratory tract's mucosa and causing liver damage. However, physiological role of ammonia gas in hepatotoxicity remains unclear. To investigate the hepatotoxic effects of inhaled ammonia gas, experiments were conducted using mouse model exposed to 100 ppm of ammonia gas for 21 days. The exposed mice exhibited signs of depression, emaciation, and reduced growth. This study revealed that inhalation of ammonia led to significant decrease in water (P < 0.0001) and food intake (P < 0.05), resulting in slower growth. Histopathological analysis showed that ammonia stress alters the microstructure of the liver by enlarging the gap between hepatic lobule and fibrosis. Moreover, ammonia-induced stress significantly reduces the expression of the anti-apoptotic protein BCl-2 (P < 0.001), while elevates the mRNA expression of the pro-apoptotic gene Bax (P < 0.001). Furthermore, ammonia inhalation significantly increases the protein expression of LC-3bII (P < 0.05) and the mRNA expression of autophagy-related gene 5 (ATG5) (P < 0.05) and p62 (P < 0.05) while remarkably decreases the mRNA expression of mammalian target of rapamycin (m-TOR) (P < 0.05). In conclusion, this study demonstrates that inhalation of ammonia gas causes liver damage and suggests autophagy happening via m-TOR/p62/LC-3bII and pro-apoptosis effect mediated by Bax/BCl-2 in the liver damage caused by ammonia inhalation. Our study provides a new perspective on ammonia-induced hepatotoxicity.
Collapse
Affiliation(s)
- Bohan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shouyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Junhong Hou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China
| | - Yangzom Chamba
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh 11495, Saudi Arabia
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Liu H, Lin H, Xu T, Shi X, Yao Y, Khoso PA, Jiang Z, Xu S. New insights into brain injury in chickens induced by bisphenol A and selenium deficiency-Mitochondrial reactive oxygen species and mitophagy-apoptosis crosstalk homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166890. [PMID: 37683847 DOI: 10.1016/j.scitotenv.2023.166890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Bisphenol A (BPA), a component of plastic products, can penetrate the blood-brain barrier and pose a threat to the nervous system. Selenium (Se) deficiency can also cause nervous system damage. Resulting from the rapid industrial development, BPA pollution and Se deficiency often coexist. However, it is unclear whether brain damage in chickens caused by BPA exposure and Se deficiency is related to the crosstalk disorder between mitophagy and apoptosis. In this study, 60 chickens (1 day old) were fed with a diet that contained 20 mg/kg BPA but was insufficient in Se (only 0.039 mg/kg) for 42 days to establish a chicken brain injury model. In vitro, the primary chicken embryo brain neurons were treated for 24 h with Se-deficient medium containing 75 μM BPA. The results showed that BPA exposure and Se deficiency inhibited the expression of the mitochondrial respiratory chain complex in brain neurons, and a large number of mitochondrial reactive oxygen species were released. Furthermore, the expression levels of mitochondrial fusion proteins (OPA1, Mfn1, and Mfn2) decreased, while the expression levels of mitochondrial fission proteins (Drp1, Mff, and Fis1) increased, thus exacerbating mitochondrial division. In addition, the results of immunofluorescence and flow cytometry analysis, as well as the elevated expressions of mitophagy related genes (PINK1, Parkin, ATG5, and LC3II/I) and pro-apoptotic markers (Bax, Cytc, Caspase3, and Caspase9) indicated that BPA exposure and Se deficiency disrupted the crosstalk homeostasis between mitophagy and apoptosis. However, this crosstalk homeostasis was restored after Mito-Tempo and Rapamycin treatment. In contrast, 3-methyladenine treatment exacerbated this crosstalk disorder. In conclusion, BPA exposure and Se deficiency can induce mitochondrial reactive oxygen species bursts and disorders of mitochondrial dynamics by destroying the mitochondrial respiratory chain complex. The result is indicative of an imbalance in mitochondrial autophagy and apoptosis crosstalk homeostasis, which damages the chicken brain.
Collapse
Affiliation(s)
- Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Pervez Ahmed Khoso
- Shaheed Benazir Bhutto, University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Zhihui Jiang
- Henan Beiai Natural Product Application and Development Engineering Research Center, Anyang Institute of Technology, Anyang 455000, Henan, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Sun Q, Wu S, Liu K, Li Y, Mehmood K, Nazar M, Hu L, Pan J, Tang Z, Liao J, Zhang H. miR-181b-1-3p affects the proliferation and differentiation of chondrocytes in TD broilers through the WIF1/Wnt/β-catenin pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105649. [PMID: 38072524 DOI: 10.1016/j.pestbp.2023.105649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023]
Abstract
Thiram is a plant fungicide, its excessive use has exceeded the required environmental standards. It causes tibial dyschondroplasia (TD) in broilers which is a common metabolic disease that affects the growth plate of tibia bone. It has been studied that many microRNAs (miRNAs) are involved in the differentiation of chondrocytes however, their specific roles and mechanisms have not been fully investigated. The selected features of tibial chondrocytes of broilers were studied in this experiment which included the expression of miR-181b-1-3p and the genes related to WIF1/Wnt/β-catenin pathway in chondrocytes through qRT-PCR, western blot and immunofluorescence. The correlation between miR-181b-1-3p and WIF1 was determined by dual luciferase reporter gene assay whereas, the role of miR-181b-1-3p and WIF1/Wnt/β-catenin in chondrocyte differentiation was determined by mimics and inhibitor transfection experiments. Results revealed that thiram exposure resulted in decreased expression of miR-181b-1-3p and increased expression of WIF1 in chondrocytes. A negative correlation was also observed between miR-181b-1-3p and WIF1. After overexpression of miR-181b-1-3p, the expression of ACAN, β-catenin and Col2a1 increased but the expression of GSK-3β decreased. It was observed that inhibition of WIF1 increased the expression of ALP, β-catenin, Col2a1 and ACAN but decreased the expression of GSK-3β. It is concluded that miR-181b-1-3p can reverse the inhibitory effect of thiram on cartilage proliferation and differentiation by inhibiting WIF1 expression and activating Wnt/β-catenin signaling pathway. This study provides a new molecular target for the early diagnosis and possible treatment of TD in broilers.
Collapse
Affiliation(s)
- Qiuyu Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shouyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kai Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Mudassar Nazar
- University of Agriculture Faisalabad, Sub-Campus Burewala, 61010, Pakistan
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Wang X, Mi J, Yang K, Wang L. Environmental Cadmium Exposure Perturbs Gut Microbial Dysbiosis in Ducks. Vet Sci 2023; 10:649. [PMID: 37999472 PMCID: PMC10674682 DOI: 10.3390/vetsci10110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023] Open
Abstract
Ore extraction, chemical production, and agricultural fertilizers may release significant amounts of heavy metals, which may eventually accumulate widely in the environment and organisms over time, causing global ecological and health problems. As a recognized environmental contaminant, cadmium has been demonstrated to cause osteoporosis and renal injury, but research regarding the effects of cadmium on gut microbiota in ducks remains scarce. Herein, we aimed to characterize the adverse effects of cadmium on gut microbiota in ducks. Results indicated that cadmium exposure dramatically decreased gut microbial alpha diversity and caused significant changes in the main component of gut microbiota. Moreover, we also observed significant changes in the gut microbial composition in ducks exposed to cadmium. A microbial taxonomic investigation showed that Firmicutes, Bacteroidota, and Proteobacteria were the most preponderant phyla in ducks regardless of treatment, but the compositions and abundances of dominant genera were different. Meanwhile, a Metastats analysis indicated that cadmium exposure also caused a distinct increase in the levels of 1 phylum and 22 genera, as well as a significant reduction in the levels of 1 phylum and 36 genera. In summary, this investigation demonstrated that cadmium exposure could disturb gut microbial homeostasis by decreasing microbial diversity and altering microbial composition. Additionally, under the background of the rising environmental pollution caused by heavy metals, this investigation provides a crucial message for the assessment of environmental risks associated with cadmium exposure.
Collapse
Affiliation(s)
| | | | | | - Lian Wang
- Department of Medical Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (X.W.); (J.M.); (K.Y.)
| |
Collapse
|
7
|
Errico A, Vinco S, Ambrosini G, Dalla Pozza E, Marroncelli N, Zampieri N, Dando I. Mitochondrial Dynamics as Potential Modulators of Hormonal Therapy Effectiveness in Males. BIOLOGY 2023; 12:547. [PMID: 37106748 PMCID: PMC10135745 DOI: 10.3390/biology12040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Worldwide the incidence of andrological diseases is rising every year and, together with it, also the interest in them is increasing due to their strict association with disorders of the reproductive system, including impairment of male fertility, alterations of male hormones production, and/or sexual function. Prevention and early diagnosis of andrological dysfunctions have long been neglected, with the consequent increase in the incidence and prevalence of diseases otherwise easy to prevent and treat if diagnosed early. In this review, we report the latest evidence of the effect of andrological alterations on fertility potential in both young and adult patients, with a focus on the link between gonadotropins' mechanism of action and mitochondria. Indeed, mitochondria are highly dynamic cellular organelles that undergo rapid morphological adaptations, conditioning a multitude of aspects, including their size, shape, number, transport, cellular distribution, and, consequently, their function. Since the first step of steroidogenesis takes place in these organelles, we consider that mitochondria dynamics might have a possible role in a plethora of signaling cascades, including testosterone production. In addition, we also hypothesize a central role of mitochondria fission boost on the decreased response to the commonly administrated hormonal therapy used to treat urological disease in pediatric and adolescent patients as well as infertile adults.
Collapse
Affiliation(s)
- Andrea Errico
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Sara Vinco
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Nunzio Marroncelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| | - Nicola Zampieri
- Department of Engineering and Innovation Medicine, Paediatric Fertility Lab, Woman and Child Hospital, Division of Pediatric Surgery, University of Verona, 37100 Verona, Italy;
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37100 Verona, Italy; (A.E.); (S.V.); (G.A.); (E.D.P.); (N.M.)
| |
Collapse
|
8
|
Mashkoor J, Al-Saeed FA, Guangbin Z, Alsayeqh AF, Gul ST, Hussain R, Ahmad L, Mustafa R, Farooq U, Khan A. Oxidative stress and toxicity produced by arsenic and chromium in broiler chicks and application of vitamin E and bentonite as ameliorating agents. Front Vet Sci 2023; 10:1128522. [PMID: 36968473 PMCID: PMC10032408 DOI: 10.3389/fvets.2023.1128522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
The present study investigated the adverse effects of arsenic and chromium in broilers and ascertained the role of vitamin E and bentonite in alleviating their harmful effects. For this purpose, we experimented on 180 one-day-old broiler chickens. The feed was administered to broiler chicks of groups 2, 6, 7, 8, and 9 chromium @ (270 mg.kg−1 BW). Groups 3, 6, 7, 8, and 9 were administered arsenic @ (50 mg.kg−1 BW). Groups 4, 7, and 9 received vitamin E (150 mg.kg−1 BW), and groups 5, 8, and 9 received bentonite (5%), respectively. Group 1 was kept in control. All the broiler chicks treated with chromium and arsenic showed a significant (p < 0.05) decline in erythrocytic parameters on experimental days 21 and 42. Total proteins decreased significantly, while ALT, AST, urea, and creatinine increased significantly (p < 0.05). TAC and CAT decreased significantly (p < 0.05), while TOC and MDA concentrations increased significantly (p < 0.05) in chromium and arsenic-treated groups on experimental days 21 and 42. Pearson correlation analysis revealed a strong positive correlation between TAC and CAT (Pearson correlation value = 0.961; p < 0.001), similarly TOC and MDA positive correlation (Pearson correlation value = 0.920; p < 0.001). However, TAC and CAT showed a negative correlation between TOC and MDA. The intensity of gross and microscopic lesions was more in chromium (270 mg.kg−1) and arsenic (50 mg.kg−1) singly or in combination-treated groups. Thus, broiler chicks treated with chromium plus arsenic exhibited higher gross and microscopic lesion intensity than other treated groups. Fatty degeneration, severe cytoplasmic vacuolar degeneration, and expansion of sinusoidal spaces were the main lesions observed in the liver. Kidneys showed renal epithelial cells necrosis, glomerular shrinkage, and severe cytoplasmic vacuolar degeneration. Co-administration of bentonite along with chromium and arsenic resulted in partial amelioration (group 8) compared to groups 7 and 9, administered arsenic + chromium + vitamin E and arsenic + chromium + vitamin E + bentonite, respectively. It was concluded that arsenic and chromium cause damage not only to haemato-biochemical parameters but also lead to oxidation stress in broilers. Vitamin E and bentonite administration can ameliorate toxicity and oxidative stress produced by arsenic and chromium.
Collapse
Affiliation(s)
- Javaria Mashkoor
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Fatimah A. Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Zhang Guangbin
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Shafia Tehseen Gul
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Latif Ahmad
- Department of Pre-clinical Studies, Faculty of Veterinary Medicine, Baqai Medical University, Karachi, Pakistan
| | - Riaz Mustafa
- University of Agriculture, Faisalabad Sub Campus, Toba Tek Singh, Pakistan
| | - Umar Farooq
- University of Agriculture, Faisalabad Sub Campus, Toba Tek Singh, Pakistan
| | - Ahrar Khan
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
- *Correspondence: Ahrar Khan
| |
Collapse
|
9
|
Qin L, Xi S. The role of Mitochondrial Fission Proteins in Mitochondrial Dynamics in Kidney Disease. Int J Mol Sci 2022; 23:ijms232314725. [PMID: 36499050 PMCID: PMC9736104 DOI: 10.3390/ijms232314725] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Mitochondria have many forms and can change their shape through fusion and fission of the outer and inner membranes, called "mitochondrial dynamics". Mitochondrial outer membrane proteins, such as mitochondrial fission protein 1 (FIS1), mitochondrial fission factor (MFF), mitochondrial 98 dynamics proteins of 49 kDa (MiD49), and mitochondrial dynamics proteins of 51 kDa (MiD51), can aggregate at the outer mitochondrial membrane and thus attract Dynamin-related protein 1 (DRP1) from the cytoplasm to the outer mitochondrial membrane, where DRP1 can perform a scissor-like function to cut a complete mitochondrion into two separate mitochondria. Other organelles can promote mitochondrial fission alongside mitochondria. FIS1 plays an important role in mitochondrial-lysosomal contacts, differentiating itself from other mitochondrial-fission-associated proteins. The contact between the two can also induce asymmetric mitochondrial fission. The kidney is a mitochondria-rich organ, requiring large amounts of mitochondria to produce energy for blood circulation and waste elimination. Pathological increases in mitochondrial fission can lead to kidney damage that can be ameliorated by suppressing their excessive fission. This article reviews the current knowledge on the key role of mitochondrial-fission-associated proteins in the pathogenesis of kidney injury and the role of their various post-translational modifications in activation or degradation of fission-associated proteins and targeted drug therapy.
Collapse
|