1
|
Song X, Li J, Xiong Z, Sha H, Wang G, Liu Q, Zeng T. Effects of Detoxifying Substances on Uranium Removal by Bacteria Isolated from Mine Soils: Performance, Mechanisms, and Bacterial Communities. MICROBIAL ECOLOGY 2024; 87:111. [PMID: 39231820 PMCID: PMC11374843 DOI: 10.1007/s00248-024-02428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
In this study, we investigated the effect of detoxifying substances on U(VI) removal by bacteria isolated from mine soil. The results demonstrated that the highest U(VI) removal efficiency (85.6%) was achieved at pH 6.0 and a temperature of 35 °C, with an initial U(VI) concentration of 10 mg/L. For detoxifying substances, signaling molecules acyl homoserine lactone (AHLs, 0.1 µmol/L), anthraquinone-2, 6-disulfonic acid (AQDS, 1 mmol/L), reduced glutathione (GSH, 0.1 mmol/L), selenium (Se, 1 mg/L), montmorillonite (MT, 1 g/L), and ethylenediaminetetraacetic acid (EDTA, 0.1 mmol/L) substantially enhanced the bacterial U(VI) removal by 34.9%, 37.4%, 54.5%, 35.1%, 32.8%, and 47.8% after 12 h, respectively. This was due to the alleviation of U(VI) toxicity in bacteria through detoxifying substances, as evidenced by lower malondialdehyde (MDA) content and higher superoxide dismutase (SOD) and catalase (CAT) activities for bacteria exposed to U(VI) and detoxifying substances, compared to those exposed to U(VI) alone. FTIR results showed that hydroxyl, carboxyl, phosphorus, and amide groups participated in the U(VI) removal. After exposure to U(VI), the relative abundances of Chryseobacterium and Stenotrophomonas increased by 48.5% and 12.5%, respectively, suggesting their tolerance ability to U(VI). Gene function prediction further demonstrated that the detoxifying substances AHLs alleviate U(VI) toxicity by influencing bacterial metabolism. This study suggests the potential application of detoxifying substances in the U(VI)-containing wastewater treatment through bioremediation.
Collapse
Affiliation(s)
- Xin Song
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Jun Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Zhiyu Xiong
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Haichao Sha
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Qin Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Shahrokhi R, Rahman A, Hubbe MA, Park J. Aminated clay-polymer composite as soil amendment for stabilizing the short- and long-chain per- and poly-fluoroalkyl substances in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134470. [PMID: 38714051 DOI: 10.1016/j.jhazmat.2024.134470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/09/2024]
Abstract
Soils contaminated with per- and poly- fluoroalkyl substances (PFAS) require immediate remediation to protect the surrounding environment and human health. A novel animated clay-polymer composite was developed by applying polyethyleneimine (PEI) solution onto a montmorillonite clay-chitosan polymer composite. The resulting product, PEI-modified montmorillonite chitosan beads (MMTCBs) were characterized as an adsorptive soil amendment for immobilizing PFAS contaminants. The MMTCBs exhibited good efficiency to adsorb the PFAS, showing adsorption capacities of 12.2, 16.7, 18.5, and 20.8 mg g-1 for PFBA, PFBS, PFOA, and PFOS, respectively, which were higher than those obtained by granular activated carbon (GAC) (i.e., an adsorbent used as a reference). Column leaching tests demonstrated that amending soil with 10% MMTCBs resulted in a substantial decrease in the leaching of PFOA, PFOS, PFBA, and PFBS by 90%, 100%, 64%, and 68%, respectively. These reductions were comparable to the values obtained for GAC-modified soil, particularly for long-chain PFAS. Incorporating MMTCBs into the soil not only preserved the structural integrity of the soil matrix but also enhanced its shear strength (kPa). Conversely, adding GAC to the soil resulted in a reduction of the soil's mechanical properties.
Collapse
Affiliation(s)
- Rahim Shahrokhi
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea.
| | - Aneesu Rahman
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, NC, United States
| | - Junboum Park
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea; Institute of Construction and Environmental Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Sun R, Lv Z, Wang Y, Gu Y, Sun Y, Zeng X, Gao Z, Zhao X, Yuan Y, Yue T. Preparation and characterization of pectin-alginate-based microbeads reinforced by nano montmorillonite filler for probiotics encapsulation: Improving viability and colonic colonization. Int J Biol Macromol 2024; 264:130543. [PMID: 38432271 DOI: 10.1016/j.ijbiomac.2024.130543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Hydrogel microbeads can be used to enhance the stability of probiotics during gastrointestinal delivery and storage. In this study, the pectin-alginate hydrogel was enhanced by adding montmorillonite filler to produce microbeads for encapsulating Lactobacillus kefiranofaciens (LK). Results showed that the viscosity of biopolymer solutions with 1 % (PAMT1) and 3 % (PAMT3) montmorillonite addition was suitable for producing regular-shaped microbeads. A layered cross-linked network was formed on the surface of PAMT3 microbeads through electrostatic interaction between pectin-alginate and montmorillonite filler, and the surrounding LK with adsorbed montmorillonite was encapsulated inside the microbeads. PAMT3 microbeads reduced the loss of viability of LK when passing through the gastric acid environment, and facilitated the slow release of LK in the intestine and colonic colonization. The maximum decrease in viability among all filler groups was 1.21 log CFU/g after two weeks of storage, while PAMT3 freeze-drying microbeads only decreased by 0.46 log CFU/g, indicating that the gel layer synergized with the adsorbed layer to provide dual protection for probiotics. Therefore, filler-reinforced microbeads are a promising bulk encapsulation carrier with great potential for the protection and delivery of probiotics and can be developed as food additives for dairy products.
Collapse
Affiliation(s)
- Rui Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhongyi Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Gu
- Chemical Engineering with Biotechnology, Imperial College London, SW7 2BX, United Kingdom
| | - Yuhan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuejun Zeng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
4
|
Lu X, Zhang YY, Cheng W, Liu Y, Li Q, Li X, Dong F, Li J, Nie X. Chelating Effect of Siderophore Desferrioxamine-B on Uranyl Biomineralization Mediated by Shewanella putrefaciens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3974-3984. [PMID: 38306233 DOI: 10.1021/acs.est.3c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
In contaminated water and soil, little is known about the role and mechanism of the biometabolic molecule siderophore desferrioxamine-B (DFO) in the biogeochemical cycle of uranium due to complicated coordination and reaction networks. Here, a joint experimental and quantum chemical investigation is carried out to probe the biomineralization of uranyl (UO22+, referred to as U(VI) hereafter) induced by Shewanella putrefaciens (abbreviated as S. putrefaciens) in the presence of DFO and Fe3+ ion. The results show that the production of mineralized solids {hydrogen-uranium mica [H2(UO2)2(PO4)2·8H2O]} via S. putrefaciens binding with UO22+ is inhibited by DFO, which can both chelate preferentially UO22+ to form a U(VI)-DFO complex in solution and seize it from U(VI)-biominerals upon solvation. However, with Fe3+ ion introduced, the strong specificity of DFO binding with Fe3+ causes re-emergence of biomineralization of UO22+ {bassetite [Fe(UO2)2(PO4)2·8(H2O)]} by S. putrefaciens, owing to competitive complexation between Fe3+ and UO22+ for DFO. As DFO possesses three hydroxamic functional groups, it forms hexadentate coordination with Fe3+ and UO22+ ions via these functional groups. The stability of the Fe3+-DFO complex is much higher than that of U(VI)-DFO, resulting in some DFO-released UO22+ to be remobilized by S. putrefaciens. Our finding not only adds to the understanding of the fate of toxic U(VI)-containing substances in the environment and biogeochemical cycles in the future but also suggests the promising potential of utilizing functionalized DFO ligands for uranium processing.
Collapse
Affiliation(s)
- Xiaojing Lu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang621000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yang-Yang Zhang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wencai Cheng
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang621000, China
| | - Yingzhangyang Liu
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang621000, China
| | - Qingrong Li
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang621000, China
| | - Xiaoan Li
- Mianyang Central Hospital, NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang 621000, China
| | - Faqin Dong
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang621000, China
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaoqin Nie
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang621000, China
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|