1
|
Wakejo WK, Meshesha BT, Kang JW, Dessalegn EE, Demesa AG. Integrated electrochemical-adsorption for simultaneous removal of pharmaceuticals from water: Process optimization and synergistic insights. CHEMOSPHERE 2024; 365:143402. [PMID: 39321882 DOI: 10.1016/j.chemosphere.2024.143402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/19/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Water contamination with pharmaceuticals has become an evident environmental challenge. Treatment processes such as electrochemical oxidation (EO) and adsorption have limitations in the simultaneous removal of pharmaceuticals from water. Therefore, this study examined the potential of coupled process (EO followed by adsorption) in binary pharmaceuticals (acetaminophen (ACM) + ciprofloxacin (CIP)) removal from water, with an emphasis on coupled process optimization. Consequently, optimized coupled process conditions including current density (22 mA/cm2), pH (5.5), EO time (40 min), adsorbent dose (0.1 g/L) and adsorption time (60 min) were obtained. Under optimal conditions, removal efficiencies of 94.6% (ACM)+92% (CIP), 94.07% (ACM)+91.15% (CIP), and > 99.8% (ACM + CIP) were recorded for 20 mg/L (ACM + CIP) removal in EO, adsorption and EO + adsorption, respectively. Further, the coupled process was employed in multiple pharmaceuticals (20 mg/L of ACM + CIP + ATN (atenolol) + AMX (amoxicillin)) removal from water and removal of > 97.56% (ACM + CIP + ATN + AMX) was achieved. Removal efficiencies of ACM (83.35%) + CIP (73.1%) + ATN (68.52%) + AMX (63.05%) and ACM (80.37%) + CIP (66.5%) + ATN (73.07%) + AMX (60.5%) were obtained in EO and adsorption, respectively. The noted lower removal efficiencies in EO and adsorption are associated with the diverse nature of the pharmaceuticals, limited adsorbent active sites, and the shared utilization of reactive oxygen species (ROS) among the pharmaceuticals in EO. The total organic carbon (TOC) removal of 40.24%, and 99% and chemical oxygen demand (COD) removal of 72.45%, and 99.6% were obtained under optimal conditions of EO, and coupled process, respectively. These findings indicate that the pharmaceuticals are only partially mineralized in EO and the subsequent adsorption effectively eliminated the remaining target pharmaceuticals, and degradation by-products from water. Additionally, integrating EO with adsorption reduced the electrical energy consumption of the EO process from 31.6 kWh/m³ to 6 kWh/m³ under optimal conditions. Overall, coupling EO with adsorption offers the utmost advantages when removing multiple pharmaceuticals from complex water matrices.
Collapse
Affiliation(s)
- Wondimu K Wakejo
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland; Africa Center of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia; Department of Chemical Engineering, Wachemo University, P.O. Box 667, Hossana, Ethiopia.
| | - Beteley T Meshesha
- Africa Center of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia; School of Chemical and Bioengineering, Addis Ababa Institute of Technology, Addis Ababa, Ethiopia
| | - Joon W Kang
- Division of the Department of Environment and Energy, Yonsei University, South Korea
| | - Eden E Dessalegn
- Africa Center of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Abayneh G Demesa
- Department of Separation Science, LUT University, FI-53850, Lappeenranta, Finland
| |
Collapse
|
2
|
Dong Z, Yao J, Hu Z, Yang J, Zhang Y. Insight into roles of carbon anodes for removal of refractory organic contaminants in electro-peroxone system: Mechanism, performance and stability. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133957. [PMID: 38452678 DOI: 10.1016/j.jhazmat.2024.133957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Electro-peroxone (EP) is a novel technique for the removal of refractory organic contaminants (ROCs), while the role of anode in this system is neglected. In this work, the EP system with graphite felt anode (EP-GF) and activated carbon fiber anode (EP-ACF) was developed to enhance ibuprofen (IBP) removal. The results showed that 91.2% and 98.6% of IBP was removed within 20 min in EP-GF and EP-ACF, respectively. Hydroxy radical (O⋅H) was identified as the dominant reactive species, contributing 80.9% and 54.0% of IBP removal in EP-ACF and EP-GF systems, respectively. The roles of adsorption in EP-ACF and direct electron transfer in EP-GF cannot be ignored. Due to the differences in mechanism, EP-GF and EP-ACF systems were suitable for the removal of O⋅H-resistant ROCs (e.g., oxalic acid and pyruvic acid) and non-O⋅H-resistant ROCs (e.g., IBP and nitrobenzene), respectively. Both systems had excellent stability relying on the introduction of oxygen functional groups on the anode, and their electrolysis energy consumption was significantly lower than that of EP-Pt system. The three degradation pathways of IBP were proposed, and the toxicity of intermediates were evaluated. In general, carbon anodes have a good application prospect in the removal of ROCs in EP systems.
Collapse
Affiliation(s)
- Zekun Dong
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou 310058, China
| | - Jie Yao
- Power China Huadong Engineering Corporation Limited, Hangzhou 310023, China
| | - Zhihui Hu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou 310058, China
| | - Jiao Yang
- College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
3
|
Song Y, Ren S, Zhang Y, Zhang Z, Wang A. Facile synthesis of bimetallic ACF/CC@FeOCl-Cu composite cathode for efficient degradation of sulfamethoxazole at neutral pH by a flow-through heterogeneous electro-Fenton process. CHEMOSPHERE 2023; 341:139971. [PMID: 37652245 DOI: 10.1016/j.chemosphere.2023.139971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Flow-through heterogeneous electro-Fenton (FHEF) process shows a broad prospect for refractory organic pollutants removal. However, maintaining a long-term service life of higher catalytic cathode is crucial for the development of cathode materials, especially for iron-functionalized cathode operated under harsh conditions. In this study, a novel bimetallic CC@FeOCl-Cu composite was synthesized through one-step calcination, coupled with a series of microstructure characterization methodology, including XRD, SEM-EDS, XPS, and FTIR. The superior catalytic activity of CC@FeOCl-Cu could be ascribed to Fe-Cu synergy and better dispersion of FeOCl nanosheets. With the optimal Cu:Fe ratio of 1:60, the bifunctional ACF/CC@FeOCl-Cu cathode was employed in FHEF process, exhibiting an outstanding performance for sulfamethoxazole (SMX) removal over a wide pH range (3.0-9.0). Comparison of experimental results indicated that the ACF/CC@FeOCl-Cu-FHEF process showed higher performance than ACF/CC@FeOCl-FHEF and homogeneous EF processes. The average SMX removal efficiency was 98% and TOC removal efficiency was more than 57% even after 10 cycles. Radical quenching experiments and electron spin resonance test confirmed that •OH was the primary active species. More •OH was generated in the ACF/CC@FeOCl-Cu-FHEF process because the doping of Cu could enhance catalytic activity of cathode. In addition, the satisfactory performance could be observed in the ACF/CC@FeOCl-Cu-FHEF process for the treatment of real landfill leachate, indicating its potential for practical application in wastewater treatment.
Collapse
Affiliation(s)
- Yongjun Song
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Songyu Ren
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yanyu Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| |
Collapse
|
4
|
Qi H, Shi X, Liu Z, Yan Z, Sun Z. An anode and cathode cooperative oxidation system constructed with Ee-GF as anode and CuFe 2O 4/Cu 2O/Cu@EGF as cathode for the efficient removal of sulfamethoxazole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162645. [PMID: 36889393 DOI: 10.1016/j.scitotenv.2023.162645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to further improve the degradation efficiency of pollutants by electrochemical oxidation system and reduce the consumption of electric energy. A simple method of electrochemical exfoliation was used to modify graphite felt (GF) to prepare an anode material (Ee-GF) with high degradation performance. An anode and cathode cooperative oxidation system was constructed with Ee-GF as the anode and CuFe2O4/Cu2O/Cu@EGF as the cathode to efficiently degrade sulfamethoxazole (SMX). Complete degradation of SMX was achieved within 30 min. Compared with anodic oxidation system alone, the degradation time of SMX was reduced by half and the energy consumption was reduced by 66.8 %. The system displayed excellent performance for the degradation of different concentrations (10-50 mg L-1) of SMX, different pollutants, and under different water quality conditions. In addition, the system still maintained 91.7 % removal rate of SMX after ten consecutive runs. At least 12 degradation products and seven possible degradation routes of SMX were generated in the degradation process by the combined system. The eco-toxicity of degradation products of SMX was reduced after the proposed treatment. This study provided a theoretical basis for the safe, efficient, and low energy consumption removal of antibiotic wastewater.
Collapse
Affiliation(s)
- Haiqiang Qi
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Xuelin Shi
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Zhibin Liu
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Zihao Yan
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Zhirong Sun
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Achour W, Ynineb F, Hadjersi T, Moulai F, Ifires M, Khen A, Manseri A, Kechouane M. Hydrothermal deposition of urchin-like NiCo2O4 on carbon felt as performed flexible electrodes for supercapacitors. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
6
|
Carbon nanofibre microfiltration membranes tailored by oxygen plasma for electrocatalytic wastewater treatment in cross-flow reactors. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|