1
|
Le F, Ruan X, Wei Z, Wu K, Wei H, Liu C. Tracing phosphorus sources in the river-lake system using the oxygen isotope of phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175022. [PMID: 39059666 DOI: 10.1016/j.scitotenv.2024.175022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The biogeochemical cycling of phosphorus (P) in river-lake systems presents significant challenges in tracing P sources, highlighting the importance of effective traceability approaches for formulating targeted management measures to mitigate lake eutrophication. In this study, we used the oxygen isotope of phosphate (δ18Op) as a tracer in the river-lake systems, establishing a tracing pathway from potential end-members, through inflow rivers, and eventually to the lake. Taking Dianshan Lake and its main inflow rivers as the study area, we measured δ18Op values of potential end-members, including domestic sewage treatment plant effluents, industrial effluents from phosphorus-related enterprises (printing and dyeing, electroplating, plastics, etc.), and farmland soils. Notably, the industrial effluent signatures ranged from 13.1 ‰ to 21.0 ‰ with an average of 16.8 ‰ ± 3.2 ‰, enriching the δ18Op threshold database. Using the MixSIAR model, it was found that phosphorus in the Jishuigang River primarily originated from agricultural non-point sources and domestic sewage in the dry season, while the Qiandengpu River, with a higher proportion of urban area, had a greater influence from domestic sewage and industrial effluents. Moreover, significant differences were observed between δ18Op values at the lake entrances of the inflow rivers (13.7 ‰ ± 1.0 ‰) and in acid-soluble phosphate of the lake sediments (9.9 ‰ ± 1.0 ‰). Isotopic tracing revealed that phosphorus in the lake originated from both external inputs (80.6 %) and internal release (19.4 %) in the dry season. Alongside pollutant flux calculations based on the hydrological conditions and water quality of the inflow rivers, our findings indicated that phosphorus in Dianshan Lake was mainly attributed to agricultural non-point sources, domestic sewage and sediment release in the dry season. This study provided novel insights into the identification of pollution sources in the river-lake systems, with broad implications for pollution control and environmental protection.
Collapse
Affiliation(s)
- Fan Le
- Department of HydroSciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China
| | - Xiaohong Ruan
- Department of HydroSciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China.
| | - Zhao Wei
- Department of HydroSciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China
| | - Kedi Wu
- Department of HydroSciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China
| | - Haizhen Wei
- Department of HydroSciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Congqiang Liu
- Department of HydroSciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Hu Y, Chen M, Pu J, Chen S, Li Y, Zhang H. Enhancing phosphorus source apportionment in watersheds through species-specific analysis. WATER RESEARCH 2024; 253:121262. [PMID: 38367374 DOI: 10.1016/j.watres.2024.121262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Phosphorus (P) is a pivotal element responsible for triggering watershed eutrophication, and accurate source apportionment is a prerequisite for achieving the targeted prevention and control of P pollution. Current research predominantly emphasizes the allocation of total phosphorus (TP) loads from watershed pollution sources, with limited integration of source apportionment considering P species and their specific implications for eutrophication. This article conducts a retrospective analysis of the current state of research on watershed P source apportionment models, providing a comprehensive evaluation of three source apportionment methods, inventory analysis, diffusion models, and receptor models. Furthermore, a quantitative analysis of the impact of P species on watersheds is carried out, followed by the relationship between P species and the P source apportionment being critically clarified within watersheds. The study reveals that the impact of P on watershed eutrophication is highly dependent on P species, rather than absolute concentration of TP. Current research overlooking P species composition of pollution sources may render the acquired results of source apportionment incapable of assessing the impact of P sources on eutrophication accurately. In order to enhance the accuracy of watershed P pollution source apportionment, the following prospectives are recommended: (1) quantifying the P species composition of typical pollution sources; (2) revealing the mechanisms governing the migration and transformation of P species in watersheds; (3) expanding the application of traditional models and introducing novel methods to achieve quantitative source apportionment specifically for P species. Conducting source apportionment of specific species within a watershed contributes to a deeper understanding of P migration and transformation, enhancing the precise of management of P pollution sources and facilitating the targeted recovery of P resources.
Collapse
Affiliation(s)
- Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Mengli Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jia Pu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Sikai Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yao Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
3
|
Wang Z, Sun F, Guo Q, Gooddy DC, Wu F. Global scale identification of catchments phosphorus source shifts with urbanization: A phosphate oxygen isotope and Bayesian mixing model approach. WATER RESEARCH 2024; 250:121026. [PMID: 38134856 DOI: 10.1016/j.watres.2023.121026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Different scenarios of urban expansion can influence the dynamic characteristics of catchments in terms of phosphorus (P). It is important to identify the changes in P sources that occur during the process of urbanization to develop targeted policies for managing P in catchments. However, there is a knowledge gap in quantifying the variations of potential P sources associated with urbanization. By combining phosphate oxygen isotopes from global catchments with a Bayesian model and the urbanization process, we demonstrate that the characteristics of potential P sources (such as fertilizers, urban wastewater, faeces, and bedrock) change as urban areas expand. Our results indicate that using phosphate oxygen isotopes in conjunction with a Bayesian model provides direct evidence of the proportions of potential P sources. We classify catchment P loadings into three stages based on shifts in potential P sources during urban expansion. During the initial stage of urbanization (urban areas < 1.5 %), urban domestic and industrial wastewater are the main contributors to P loadings in catchments. In the mid-term acceleration stage (1.5 % ≤ urban areas < 3.5 %), efforts to improve wastewater treatment significantly reduce wastewater P input, but the increase in fertilizer P input offsets this reduction in sewage-derived P. In the high-level urbanization stage (urban areas ≥ 3.5 %), the proportions of the four potential P sources tend to stabilize. Remote areas bear the burden of excessive P loadings to meet the growing food demand and improved diets resulting from the increasing urban population. Our findings support the development of strategies for water quality management that better consider the driving forces of urbanization on catchment P loadings.
Collapse
Affiliation(s)
- Ziteng Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fuhong Sun
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Qingjun Guo
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daren C Gooddy
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Fengchang Wu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Yuan H, Wang H, Cai Y, Yin H, Zeng Q, Liu E, Li Q, Wang Y. Iron bound phosphorus predominates the contribution of phosphorus to lake system from terrigenous source: The evidence from the small watershed scale. WATER RESEARCH 2023; 245:120661. [PMID: 37769418 DOI: 10.1016/j.watres.2023.120661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
The reduction of exogenous emissions of phosphorus (P) is a crucial measure for resolving eutrophication in lakes. However, the input of terrigenous materials still potentially contributes to an increase of P load in lake systems. In this study, we examined the phosphate oxygen isotope (δ18OP) of various P fractions in soils and sediments in a small lake watershed, namely, Shijiuhu watershed. The high-resolution in-situ diffusive gradients in thin films (DGT) technology was also used to survey the dynamic processes of P diffusion from sediment particles to the water. The results demonstrated that lighter δ18OP values (16.2-19.5‰) for individual P fractions in lake sediments were detected compared to other land-use patterns, indicating the cumulative biological P recycling on anaerobic condition. Fe bound P (Fe-P) overall had heavier δ18OP values (17.3-24.8‰) than some of Ca bound P (Ca-P) and equilibrium values, suggesting that Fe-P conserved the parental isotope signatures from terrigenous source and could act as the ideal tracer for the lake sediments. The mixing effect of terrigenous detrital input and biological mineralization made the source identification uncertain by using Ca-P, which had a wider range of δ18OP values (13.0-26.6‰). Additionally, significantly positive correlation (r = 0.551-0.913, p<0.05) between soluble reactive P (SRP) and Fe2+ in interstitial water obtained using DGT measurement revealed the conspicuous release and desorption of solid Fe-P toward the water. High diffusion fluxes from the sediments toward the overlying water further demonstrated that the desorption of Fe-P in the soil-originated sediments toward the solution conspicuously facilitated the accumulation of SRP in lake water. The first-time application of δ18OP isotope combined with in-situ DGT techniques certified that it's feasible for the contribution confirmation from terrigenous to lacustrine environments, and presented the direct evidence for management strategy making about P control and eutrophication restoration at the catchment scale of lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Qiang Li
- Department of Natural Sciences, University of Houston-Downtown, Houston 77002, United States
| | - Yu Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
5
|
Wang Z, Tian L, Zhao C, Du C, Zhang J, Sun F, Tekleab TZ, Wei R, Fu P, Gooddy DC, Guo Q. Source partitioning using phosphate oxygen isotopes and multiple models in a large catchment. WATER RESEARCH 2023; 244:120382. [PMID: 37660467 DOI: 10.1016/j.watres.2023.120382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023]
Abstract
Excessive phosphorus (P) loadings cause major pollution concerns in large catchments. Quantifying the point and nonpoint P sources of large catchments is essential for catchment P management. Although phosphate oxygen isotopes (δ18O(PO4)) can reveal P sources and P cycling in catchments, quantifying multiple P sources in a whole catchment should be a research focus. Therefore, this study aimed to quantitatively identify the proportions of multiple potential end members in a typical large catchment (the Yangtze River Catchment) by combining the phosphate oxygen isotopes, land use type, mixed end-element model, and a Bayesian model. The δ18O(PO4) values of river water varied spatially from 4.9‰ to18.3‰ in the wet season and 6.0‰ to 20.9‰ in the dry season. Minor seasonal differences but obvious spatial changes in δ18O(PO4) values could illustrate how human activity changed the functioning of the system. The results of isotopic mass balance and the Bayesian model confirmed that controlling agricultural P from fertilizers was the key to achieving P emission reduction goals by reducing P inputs. Additionally, the effective rural domestic sewage treatment, development of composting technology, and resource utilization of phosphogypsum waste could also contribute to catchment P control. P sources in catchment ecosystems can be assessed by coupling an isotope approach and multiple-models.
Collapse
Affiliation(s)
- Ziteng Wang
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China
| | - Changqiu Zhao
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenjun Du
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhang
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhong Sun
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Teklit Zerizghi Tekleab
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfei Wei
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingqing Fu
- School of Earth System Science, Tianjin University
| | - Daren C Gooddy
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Qingjun Guo
- Key Laboratory for Resource Use and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Yuan H, Chen P, Liu E, Yu J, Tai Z, Li Q, Wang H, Cai Y. Terrestrial sources regulate the endogenous phosphorus load in Taihu Lake, China after exogenous controls: Evidence from a representative lake watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:118016. [PMID: 37121007 DOI: 10.1016/j.jenvman.2023.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Identifying phosphorus (P) sources and contributions from terrestrial sources is important for clean water and eutrophication management in lake watersheds. However, this remains challenging owing to the high complexity of P transport processes. The concentrations of different P fractions in the soils and sediments from Taihu Lake, a representative freshwater lake watershed, were obtained using sequential extraction procedure. The dissolved phosphate (PO4-P) and alkaline phosphatase activity (APA) in the lake's water were also surveyed. The results showed that different P pools in the soil and sediments displayed different ranges. Higher concentrations of P fractions were measured in the solid soils and sediments from the northern and western regions of the lake watershed, indicating a larger input of P from exogenous sources, including agriculture runoff and industrial effluent from the river. Generally, higher Fe-P and Ca-P concentrations of up to 399.5 and 481.4 mg/kg were detected in soils and lake sediments, respectively. Similarly, the lake's water had higher concentrations of PO4-P and APA in the northern region. A significant positive correlation was found between Fe-P in the soil and PO4-P concentrations in the water. Statistical analysis indicated that appropriately 68.75% P was retained in the sediment from terrigenous sources, and 31.25% P experienced dissolution and shifted to the solution phase in the water-sediment ecosystems. The dissolution and release in Fe-P in the soils were responsible for the increase of Ca-P in the sediment after the afflux of soils into the lake. These findings suggest that soil runoff predominantly controls P occurrence in lake sediments as an exogenous source. Generally, the strategy of reducing terrestrial inputs from agricultural soil discharge is still an important step in P management at the catchment scale of lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Panyu Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250359, China
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ziqiu Tai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706, Madison, WI, USA
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|