1
|
Li C, Yuan Q, Hao L, Xu M, Cao J, Liu W. Synergistic reduction of pollution and carbon mitigation in constructed wetlands-microbial fuel cell using sludge-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:172979. [PMID: 38705303 DOI: 10.1016/j.scitotenv.2024.172979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Integrating microbial fuel cells (MFC) into constructed wetland systems (CW) has been an efficient wastewater treatment to improve the pollutants removal and regenerate power energy. This study fabricated a sludge biochar material (SBM) to sequestrate the carbon of residual sludge. Thereafter used SBM and modified SBM as the substrate materials to construct three groups of CW-MFC for decreasing the greenhouse gas (GHG) emission. The water quality improvement in removal efficiency achieved (2.59 %, 3.10 %, 5.21 % for COD; 3.31 %, 3.60 %, 6.71 % for TN; 1.80 %, 7.38 %, 4.93 % for TP) by the application of MFC, SBM, and modified SBM in wastewater treatment, respectively. Additionally, the reduction in global warming potential (GWP) realized 17.2 %, 42.2 %, and 64.4 % resulting from these applications. The carbon flow and fate diagrams showed MFC shifted the gas phase‑carbon flow from CH4 to CO2, and SBM promoted this shift trends. Microbial diversity indicated enrichment of electrochemically active bacteria (EAB), denitrifying bacteria, and phosphate accumulating organisms (PAOs) by SBM. Metabolic pathways analysis showed that introduction of MFC and SBM exhibited significant increases of key functional genes in metabolic pathway of anaerobic oxidation of methane (AOM). This study highlights the benefit of CW-MFC in and provides a new strategy for removing pollutants and abating GHG emissions in wastewater treatment.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Quan Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Liangshan Hao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Weijing Liu
- Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| |
Collapse
|
2
|
Wu Z, Zhao T, Zhang Y, Wang Y, Chen P, Lu G, Huang S, Qiu G. Iron-enhanced microscale laboratory aerated filters in the treatment of artificial mariculture wastewater: A study on nitrogen removal performance and the impact on microbial community structure. CHEMOSPHERE 2024; 357:141854. [PMID: 38556181 DOI: 10.1016/j.chemosphere.2024.141854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
This study investigates the nitrogen removal efficacy and microbial community dynamics in seawater aquaculture effluent treatment using three different substrate combinations of microscale laboratory aerated filters (MFs) - MF1 (LECA), MF2 (LECA/Fe-C), and MF3 (LECA/Pyrite). The findings indicated that the COD removal exceeded 95% across all MFs, with higher removal efficiencies in MF2 and MF3. In terms of nitrogen removal performance, MF2 exhibited the highest average nitrogen removal of 93.17%, achieving a 12.35% and 3.56% increase compared to MF1 (80.82%) and MF3 (89.61%), respectively. High-throughput sequencing analysis revealed that the Fe-C substrate significantly enhanced the diversity of the microbial community. Notably, in MF2, the salinophilic denitrifying bacterium Halomonas was significantly enriched, accounting for 42.6% of the total microbial community, which was beneficial for nitrogen removal. Moreover, an in-depth analysis of nitrogen metabolic pathways and microbial enzymes indicated that MF2 and MF3 possessed a high abundance of nitrification and denitrification enzymes, related to the high removal rates of NH4+-N and NO3--N. Therefore, the combination of LECA with iron-based materials significantly enhances the nitrogen removal efficiency from mariculture wastewater.
Collapse
Affiliation(s)
- Zhipeng Wu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Tianyu Zhao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Yu Zhang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Yanling Wang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Pengfei Chen
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Leow GY, Lam SM, Sin JC, Zeng H, Li H, Huang L, Lin H. Carbide lime as substrates to boost energy recuperation and dyestuff removal in constructed wetland-microbial fuel cell integrated with copper oxide/carbon cloth cathode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23647-23663. [PMID: 38427169 DOI: 10.1007/s11356-024-32637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Methylene blue (MB) was regarded as a highly toxic and hazardous substance owing to its irreparable hazard and deplorable damage on the ecosystem and the human body. The treatment of this colorant wastewater appeared to be one of the towering challenges in wastewater treatment. In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) with effective MB elimination and its energy recuperation concurrently based on the incorporation of carbide lime as a substrate in a new copper oxide-loaded on carbon cloth (CuO/CC) cathode system was studied. The crucial influencing parameters were also delved, and the MB degradation and chemical oxygen demand (COD) removal efficiencies were correspondingly incremented by 97.3% and 89.1% with maximum power output up to 74.1 mW m-2 at optimal conditions (0.2 g L-1 carbide lime loading and 500 Ω external resistance). The carbide lime with high calcium ion content was greatly conducive for the enrichment of critical microorganism and metabolic activities. The relative abundances of functional bacteria including Proteobacteria and Actinobacteriota were vividly increased. Moreover, the impressive results obtained in printed ink wastewater treatment with a COD removal efficiency of 81.3% and a maximum power density of 58.2 mW m-2, which showcased the potential application of CW-MFC.
Collapse
Affiliation(s)
- Guo-Yao Leow
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Sze-Mun Lam
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
| | - Jin-Chung Sin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
4
|
Zhang W, Jia H, Wang Y, Gao F, Yang G, Wang J. Review in application of blast furnace dust in wastewater treatment: material preparation, integrated process, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22339-22361. [PMID: 38433174 DOI: 10.1007/s11356-024-32631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Blast furnace dust (BFD) is the solid powder and particulate matter produced by dust removal process in ironmaking industry. The element composition of BFD is complex, and a direct return to sintering will lead to heavy metal enrichment and blast furnace lining corrosion. In recent years, the application of BFD in wastewater treatment has attracted widespread attention. Based on the mechanisms of action of BFD in wastewater, this paper discusses in detail the application of BFD in iron-carbon micro-electrolysis, biological enhancement, adsorption, flocculation, and Fenton/Fenton-like reactions. Iron oxides and carbon in BFD are key substances. Thus, BFD has great potential as a raw material in wastewater treatment, and the waste utilization of BFD can be realized. However, the difference in elements and composition of BFD limits its large-scale application. We can classify BFD according to different proportions of elements. In the future, it is necessary to focus on the service life of BFD in water and whether it shall bring secondary pollution to water.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yue Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Fei Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Guang Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China.
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| |
Collapse
|
5
|
Guo B, Li G, Xu H, Fang Y, Gao Z, Zhao Y, Zhang J. Enhanced denitrification performance in iron-carbon wetlands through biomass addition: Impact on nitrate and ammonia transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169913. [PMID: 38185167 DOI: 10.1016/j.scitotenv.2024.169913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
This study investigated the influence of biomass addition on the denitrification performance of iron-carbon wetlands. During long-time operation, the effluent NO3--N concentration of CW-BFe was observed to be the lowest, registering at 0.418 ± 0.167 mg/L, outperforming that of CW-Fe, which recorded 1.467 ± 0.467 mg/L. However, the effluent NH4+-N for CW-BFe increased to 1.465 ± 0.121 mg/L, surpassing CW-Fe's 0.889 ± 0.224 mg/L. Within a typical cycle, when establishing first-order reaction kinetics based on NO3--N concentrations, the introduction of biomass was found to amplify the kinetic constants across various stages in the iron-carbon wetland, ranging between 2.4 and 5.4 times that of CW-Fe. A metagenomic analysis indicated that biomass augments the reduction of NO3--N and NO2--N nitrogen and significantly bolsters the dissimilation nitrate reduction to ammonia pathway. Conversely, it impedes the reduction of N2O, leading to a heightened proportion of 2.715 % in CW-BFe's nitrogen mass balance, a stark contrast to CW-Fe's 0.379 %.
Collapse
Affiliation(s)
- Baolei Guo
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Guoqiang Li
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China.
| | - Hongbin Xu
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China.
| | - Yingke Fang
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Zhao Gao
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Yuxin Zhao
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Jingyi Zhang
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| |
Collapse
|
6
|
Li D, Zhao Y, Wei D, Tang C, Wei T. Key issues to consider toward an efficient constructed wetland-microbial fuel cell: the idea and the reality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11559-11575. [PMID: 38225491 DOI: 10.1007/s11356-024-31984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
The research on constructed wetland (CW) and microbial fuel cell (MFC) has been separate studies worldwide with crucial achievements being made in both fields. Due to environmentally friendly feature (of CW) and rich microbial population and excellent electrode catalytic activity (of MFC), CW and MFC have their own anticipated application prospect in wastewater purification and biological electricity generation. More significantly, the idea of embedding MFC into CW to form CW-MFC expands the scope for both of them and this has received much interest in recent years due to its striking features of sewage treatment efficiency, electricity generation, sustainability, and environmental friendliness. The increasing interest and the lack of soul of CW-MFC emerging to the new researchers reflect the need to recall the idea and summarize its development with regard to achieving its reality via some key issues This forms the basis of the paper. The paper also includes how to enhance the efficiency of electricity generation and supplement energy consumption, the degradation of emerging pollutants, and the degradation mechanism as well as the potential joint application of CW-MFC with other treatment technique. A mass of CW-MFC design parameters has been synthesized from the literature. Challenges and potential directions of CW-MFC in the future are prospected. It is expected that the paper can serve as a linkage for bridging knowledge gaps for further studies of CW-MFC.
Collapse
Affiliation(s)
- Diaodiao Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
- Department of Municipal and Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- Department of Municipal and Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
| | - Dan Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
- Department of Municipal and Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Cheng Tang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
- Department of Municipal and Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
- Department of Municipal and Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain
| |
Collapse
|
7
|
Garbini GL, Barra Caracciolo A, Grenni P. Electroactive Bacteria in Natural Ecosystems and Their Applications in Microbial Fuel Cells for Bioremediation: A Review. Microorganisms 2023; 11:1255. [PMID: 37317229 DOI: 10.3390/microorganisms11051255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Electroactive bacteria (EAB) are natural microorganisms (mainly Bacteria and Archaea) living in various habitats (e.g., water, soil, sediment), including extreme ones, which can interact electrically each other and/or with their extracellular environments. There has been an increased interest in recent years in EAB because they can generate an electrical current in microbial fuel cells (MFCs). MFCs rely on microorganisms able to oxidize organic matter and transfer electrons to an anode. The latter electrons flow, through an external circuit, to a cathode where they react with protons and oxygen. Any source of biodegradable organic matter can be used by EAB for power generation. The plasticity of electroactive bacteria in exploiting different carbon sources makes MFCs a green technology for renewable bioelectricity generation from wastewater rich in organic carbon. This paper reports the most recent applications of this promising technology for water, wastewater, soil, and sediment recovery. The performance of MFCs in terms of electrical measurements (e.g., electric power), the extracellular electron transfer mechanisms by EAB, and MFC studies aimed at heavy metal and organic contaminant bioremediationF are all described and discussed.
Collapse
Affiliation(s)
- Gian Luigi Garbini
- Department of Ecology and Biological Sciences, Tuscia University, 01100 Viterbo, Italy
- Water Research Institute, National Research Council, Montelibretti, 00010 Rome, Italy
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council, Montelibretti, 00010 Rome, Italy
| | - Paola Grenni
- Water Research Institute, National Research Council, Montelibretti, 00010 Rome, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
8
|
Han J, Zhao J, Wang Y, Shu L, Tang J. Performance optimization of two-stage constructed wetland-microbial fuel cell system for the treatment of high-concentration wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63620-63630. [PMID: 37052840 DOI: 10.1007/s11356-023-26488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 05/11/2023]
Abstract
Constructed wetland-microbial fuel cell (CW-MFC) has attracted much attention because of its dual functions of wastewater treatment and energy recovery. However, its performance in treating high-concentration wastewater is degraded by the decreased dissolved oxygen at the cathode and insufficient electron acceptors. In this study, two CW-MFC systems with cathodic aeration were connected in series to investigate the effects of aeration rate and hydraulic retention time (HRT) on the removal of pollutants and the performance of electricity production in high-concentration wastewater. Results showed that aeration enhanced NH4+-N and TP removal by 45.0-49.8% and 11.5-18.0%, compared with the unaerated condition, respectively. Meanwhile, no significant change regarding COD removal was observed. Aeration enhances the output voltage and power density of the system, especially the first stage CW-MFC, which improved the power production performance by 1 to 2 orders-of-magnitude. Increasing HRT improves the system's pollutant treatment efficiency and power generation performance for high-concentration wastewater. Still, the extension of HRT to 2 days will not contribute much to improving the removal efficiency. Under optimized conditions, the maximum total removal rates of COD, NH4+-N, and TP for the two-stage tandem CW-MFC system were 99.3 ± 0.2%, 92.4 ± 1.6%, and 79.5 ± 3.4%, respectively. Meanwhile, the maximum output voltage and maximum power density of the first-stage CW-MFC were 405 mV and 138.0 mW/m3, respectively. In contrast, the maximum output voltage and maximum power density of the second stage are 105 mV and 14.7 mW/m3, respectively.
Collapse
Affiliation(s)
- Jiabi Han
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jinhui Zhao
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China.
| | - Yangyang Wang
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Lisha Shu
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jixian Tang
- College of Urban Construction, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|