1
|
Liu ZH, Ai S, Xia Y, Wang HL. Intestinal toxicity of Pb: Structural and functional damages, effects on distal organs and preventive strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172781. [PMID: 38685433 DOI: 10.1016/j.scitotenv.2024.172781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Lead (Pb) is one of the most common heavy metal pollutants that possesses multi-organ toxicity. For decades, great efforts have been devoted to investigate the damage of Pb to kidney, liver, bone, blood cells and the central nervous system (CNS). For the common, dietary exposure is the main avenue of Pb, but our knowledge of Pb toxicity in gastrointestinal tract (GIT) remains quite insufficient. Importantly, emerging evidence has documented that gastrointestinal disorders affect other distal organs like brain and liver though gut-brain axis or gut-liver axis, respectively. This review focuses on the recent understanding of intestinal toxicity of Pb exposure, including structural and functional damages. We also review the influence and mechanism of intestinal toxicity on other distal organs, mainly concentrated on brain and liver. At last, we summarize the bioactive substances that reported to alleviate Pb toxicity, providing potential dietary intervention strategies to prevent or attenuate Pb toxicity.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| |
Collapse
|
2
|
Zhang X, Wang J, Liu Y, Wang H, Li B, Li Q, Wang Y, Zong Y, Wang J, Meng Q, Wu S, Hao R, Li X, Chen R, Chen H. In situ profiling reveals spatially metabolic injury in the initiation of polystyrene nanoplastic-derived intestinal epithelial injury in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172037. [PMID: 38575003 DOI: 10.1016/j.scitotenv.2024.172037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Despite increasing concerns regarding the harmful effects of plastic-induced gut injury, mechanisms underlying the initiation of plastic-derived intestinal toxicity remain unelucidated. Here, mice were subjected to long-term exposure to polystyrene nanoplastics (PS-NPs) of varying sizes (80, 200, and 1000 nm) at doses relevant to human dietary exposure. PS-NPs exposure did not induce a significant inflammatory response, histopathological damage, or intestinal epithelial dysfunction in mice at a dosage of 0.5 mg/kg/day for 28 days. However, PS-NPs were detected in the mouse intestine, coupled with observed microstructural changes in enterocytes, including mild villous lodging, mitochondrial membrane rupture, and endoplasmic reticulum (ER) dysfunction, suggesting that intestinal-accumulating PS-NPs resulted in the onset of intestinal epithelial injury in mice. Mechanistically, intragastric PS-NPs induced gut microbiota dysbiosis and specific bacteria alterations, accompanied by abnormal metabolic fingerprinting in the plasma. Furthermore, integrated data from mass spectrometry imaging-based spatial metabolomics and metallomics revealed that PS-NPs exposure led to gut dysbiosis-associated host metabolic reprogramming and initiated intestinal injury. These findings provide novel insights into the critical gut microbial-host metabolic remodeling events vital to nanoplastic-derived-initiated intestinal injury.
Collapse
Affiliation(s)
- Xianan Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China; Yanjing Medical College, Capital Medical University, Beijing 101300, China
| | - Jing Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuansheng Liu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hemin Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Bin Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qing Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuru Zong
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiajia Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qingtao Meng
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China
| | - Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China
| | - Rongzhang Hao
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China.
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an 710032, China.
| | - Hanqing Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Department of Nutrition & Food Hygiene, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Zheng S, Wang Z, Cao X, Wang L, Gao X, Shen Y, Du J, Liu P, Zhuang Y, Guo X. Insights into the effects of chronic combined chromium-nickel exposure on colon damage in mice through transcriptomic analysis and in vitro gastrointestinal digestion assay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116458. [PMID: 38759536 DOI: 10.1016/j.ecoenv.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Heavy metals interact with each other in a coexisting manner to produce complex combined toxicity to organisms. At present, the toxic effects of chronic co-exposure to heavy metals hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] on organisms are seldom studied and the related mechanisms are poorly understood. In this study, we explored the mechanism of the colon injury in mice caused by chronic exposure to Cr or/and Ni. The results showed that, compared with the control group, Cr or/and Ni chronic exposure affected the body weight of mice, and led to infiltration of inflammatory cells in the colon, decreased the number of goblet cells, fusion of intracellular mucus particles and damaged cell structure of intestinal epithelial. In the Cr or/and Ni exposure group, the activity of nitric oxide synthase (iNOS) increased, the expression levels of MUC2 were significantly down-regulated, and those of ZO-1 and Occludin were significantly up-regulated. Interestingly, factorial analysis revealed an interaction between Cr and Ni, which was manifested as antagonistic effects on iNOS activity, ZO-1 and MUC2 mRNA expression levels. Transcriptome sequencing further revealed that the expression of genes-related to inflammation, intestinal mucus and tight junctions changed obviously. Moreover, the relative contents of Cr(VI) and Ni(II) in the Cr, Ni and Cr+Ni groups all changed with in-vitro gastrointestinal (IVG)digestion, especially in the Cr+Ni group. Our results indicated that the chronic exposure to Cr or/and Ni can lead to damage to the mice colon, and the relative content changes of Cr(VI) and Ni(II) might be the main reason for the antagonistic effect of Cr+Ni exposure on the colon damage.
Collapse
Affiliation(s)
- Shuangyan Zheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zilong Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xianhong Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Luqi Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yufan Shen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Du
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
4
|
Gu Y, Zheng S, Huang C, Cao X, Liu P, Zhuang Y, Li G, Hu G, Gao X, Guo X. Microbial colony sequencing combined with metabolomics revealed the effects of chronic hexavalent chromium and nickel combined exposure on intestinal inflammation in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169853. [PMID: 38218477 DOI: 10.1016/j.scitotenv.2023.169853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
The pollution and toxic effects of hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] have become worldwide public health issues. However, the potential detailed effects of chronic combined Cr(VI) and Ni exposure on colonic inflammation in mice have not been reported. In this study, 16S rDNA sequencing, metabolomics data analysis, qPCR and other related experimental techniques were used to comprehensively explore the mechanism of toxic damage and the inflammatory response of the colon in mice under the co-toxicity of chronic hexavalent chromium and nickel. The results showed that long-term exposure to Cr(VI) and/or Ni resulted in an imbalance of trace elements in the colon of mice with significant inflammatory infiltration of tissues. Moreover, Cr(VI) and/or Ni poisoning upregulated the expression levels of IL-6, IL-18, IL-1β, TNF-α, IFN-γ, JAK2 and STAT3 mRNA, and downregulated IL-10 mRNA, which was highly consistent with the trend in protein expression. Combined with multiomics analysis, Cr(VI) and/or Ni could change the α diversity and β diversity of the gut microbiota and induce significant differential changes in metabolites such as Pyroglu-Glu-Lys, Val-Asp-Arg, stearidonic acid, and 20-hydroxyarachidonic acid. They are also associated with disorders of important metabolic pathways such as lipid metabolism and amino acid metabolism. Correlation analysis revealed that there was a significant correlation between gut microbes and metabolites (P < 0.05). In summary, based on the advantages of comprehensive analysis of high-throughput sequencing sets, these results suggest that chronic exposure to Cr(VI) and Ni in combination can cause microbial flora imbalances, induce metabolic disorders, and subsequently cause colonic damage in mice. These data provide new insights into the toxicology and molecular mechanisms of Cr(VI) and Ni.
Collapse
Affiliation(s)
- Yueming Gu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuangyan Zheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xianhong Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
5
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
6
|
Wu S, Wu Z, Chen Y. Effect of Cordyceps militaris Powder Prophylactic Supplementation on Intestinal Mucosal Barrier Impairment and Microbiota-Metabolites Axis in DSS-Injured Mice. Nutrients 2023; 15:4378. [PMID: 37892453 PMCID: PMC10610503 DOI: 10.3390/nu15204378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease with an unknown pathogenesis and increasing incidence. The objective of this study is to investigate the impact of prophylactic treatment with Cordyceps militaris on UC. The findings demonstrate that prophylactic supplementation of C. militaris powder effectively mitigates disease symptoms in DSS-injured mice, while also reducing the secretion of pro-inflammatory cytokines. Furthermore, C. militaris powder enhances the integrity of the intestinal mucosal barrier by up-regulating MUC2 protein expression and improving tight junction proteins (ZO-1, occludin, and claudin 1) in DSS-injured mice. Multiomics integration analyses revealed that C. militaris powder not only reshaped gut microbiota composition, with an increase in Lactobacillus, Odoribacter, and Mucispirillum, but also exerted regulatory effects on various metabolic pathways including amino acid, glyoxylates, dicarboxylates, glycerophospholipids, and arachidonic acid. Subsequent analysis further elucidated the intricate interplay of gut microbiota, the intestinal mucosal barrier, and metabolites, suggesting that the microbiota-metabolite axis may involve the effect of C. militaris on intestinal mucosal barrier repair in UC. Moreover, in vitro experiments demonstrated that peptides and polysaccharides, derived from C. militaris, exerted an ability to change the gut microbiota structure of UC patients' feces, particularly by promoting the growth of Lactobacillus. These findings suggest that regulatory properties of C. militaris on gut microbiota may underlie the potential mechanism responsible for the protective effect of C. militaris in UC. Consequently, our study will provide support for the utilization of C. militaris as a whole food-based ingredient against the occurrence and development of UC.
Collapse
Affiliation(s)
- Shujian Wu
- Shenzhen Clinical Research Center for Digestive Disease, Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China;
| | - Zaoxuan Wu
- State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China;
| | - Ye Chen
- Shenzhen Clinical Research Center for Digestive Disease, Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China;
- State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China;
| |
Collapse
|
7
|
Dong W, Yang Z. Association of nickel exposure with body mass index, waist circumference and incidence of obesity in US adults. CHEMOSPHERE 2023; 338:139599. [PMID: 37480956 DOI: 10.1016/j.chemosphere.2023.139599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/25/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
This study aimed to detect the relationship between nickel exposure and body mass index (BMI), waist circumference and incidence of obesity in the general population of the United States. The National Health and Nutrition Examination Survey (NHANES) 2017-2018 database was utilized, and the sample comprised 1702 participants aged 18 years and above with complete urinary nickel, body mass index, and waist circumference data. Obesity was determined using BMI and waist circumference data. The multivariate linear regression and logistic regression models were utilized to detect the association between urinary nickel concentration and BMI, waist circumference, and incidence of obesity. After multivariable adjustment, the log-transformed urinary nickel concentration was inversely associated with BMI [β = -0.87; 95% confidence interval (CI): (-1.36, -0.38)] and waist circumference [β = -1.51; 95% CI: (-2.93, -0.08)]. Compared with the lowest tertile of urinary nickel, the β value and 95% CI of BMI and waist circumference for the highest tertile were β = -1.65.95% CI: (-2.85, -0.45) and β = -2.78, 95% CI: (-6.17, 0.62), respectively. The log-transformed urinary nickel concentration was also negatively associated with obesity status [adjusted odds ratio (OR) = 0.81, 95% CI: (0.64, 1.01)]. Compared with the lowest tertile of urinary nickel, the adjusted OR and 95% CI of obesity status for the highest tertile were OR = 0.64 and 95% CI: (0.37, 1.12). Smooth curve fitting and the generalized additive model indicated that elevated urinary nickel concentration was associated with decreased BMI, waist circumference, and incidence of obesity. The negative association was consistent and robust in different subgroups, according to stratified analysis. This study found that nickel exposure may be negatively associated with BMI, waist circumference and incidence of obesity in US Adults.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiyong Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Pouwels SD, Sigaeva A, de Boer S, Eichhorn IA, Koll L, Kuipers J, Schirhagl R, Heijink IH, Burgess JK, Slebos DJ. Host-device interactions: exposure of lung epithelial cells and fibroblasts to nickel, titanium, or nitinol affect proliferation, reactive oxygen species production, and cellular signaling. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:38. [PMID: 37486435 PMCID: PMC10366254 DOI: 10.1007/s10856-023-06742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Endoscopic implantation of medical devices for the treatment of lung diseases, including airway stents, unidirectional valves and coils, is readily used to treat central airway disease and emphysema. However, granulation and fibrotic tissue formation impairs treatment effectiveness. To date little is known about the interaction between implanted devices, often made from metals, such as nickel, titanium or nitinol, and cells in the airways. Here, we study the response of lung epithelial cells and fibroblasts to implant device materials. The adhesion and proliferation of bronchial epithelial cells and lung fibroblasts upon exposure to 10 × 3 × 1 mm pieces of nickel, titanium or nitinol is examined using light and scanning electron microscopy. Pro-inflammatory cytokine mRNA expression and release, signaling kinase activity and intracellular free radical production are assessed. Nitinol, and to a lesser extent nickel and titanium, surfaces support the attachment and growth of lung epithelial cells. Nitinol induces a rapid and significant alteration of kinase activity. Cells directly exposed to nickel or titanium produce free radicals, but those exposed to nitinol do not. The response of lung epithelial cells and fibroblasts depends on the metal type to which they are exposed. Nitinol induces cellular surface growth and the induction of kinase activity, while exposure of lung epithelial cells to nickel and titanium induces free radical production, but nitinol does not.
Collapse
Affiliation(s)
- Simon D Pouwels
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Alina Sigaeva
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, The Netherlands
| | - Shanna de Boer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ilse A Eichhorn
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Lisanne Koll
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, The Netherlands
| | - Irene H Heijink
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
9
|
Yang Q, Zuo Z, Zeng Y, Ouyang Y, Cui H, Deng H, Zhu Y, Deng J, Geng Y, Ouyang P, Lai W, Du Z, Ni X, Yin H, Fang J, Guo H. Autophagy-mediated ferroptosis involved in nickel-induced nephrotoxicity in the mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115049. [PMID: 37235900 DOI: 10.1016/j.ecoenv.2023.115049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Nickel, as a widely polluted metal, has been shown nephrotoxicity. Ferroptosis is a new type of cell death driven by iron-dependent lipid peroxidation. Our study found that nickel chloride (NiCl2) induced ferroptosis in mouse kidney and TCMK-1 cells. The iron content was significantly increased in the kidney and TCMK-1 cells after NiCl2 treatment. Lipid peroxidation and MDA content were significantly increased, and GSH content and T-SOD activity were significantly decreased after exposure to NiCl2. Moreover, NiCl2 increased COX-2 protein levels, decreased SLC7A11 and GPX4 protein levels, and elevated Ptgs2 mRNA levels. Next, the mechanism of Ni-induced ferroptosis was investigated. The results showed that NiCl2 induced autophagy in TCMK-1 cells, which promoted ferroptosis induced by NiCl2. Furthermore, the data of autophagy activation or inhibition experiment showed that autophagy facilitated ferroptosis through the degradation of the iron regulation protein NCOA4 and FTH1. Otherwise, iron chelator DFOM treatment inhibited ferroptosis induced by NiCl2. Finally, ferroptosis inhibitor Fer-1 treatment significantly alleviated cytotoxicity induced by NiCl2. To sum up, our above results showed that ferroptosis is involved in NiCl2-induced nephrotoxicity, and NiCl2 induces autophagy-dependent ferritin degradation, releases iron ions, leads to iron overload, and induces ferroptosis. This study supplies a new theoretical foundation for the study of nickel and renal toxicity.
Collapse
Affiliation(s)
- Qing Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yuxin Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Yujuan Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Weiming Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Heng Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China.
| |
Collapse
|
10
|
Bai G, Zou Y, Zhang W, Jiang X, Qin J, Teng T, Sun H, Shi B. Perinatal exposure to high concentration glyphosate-based herbicides induces intestinal apoptosis by activating endoplasmic reticulum stress in offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161223. [PMID: 36584959 DOI: 10.1016/j.scitotenv.2022.161223] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate-based herbicides (GBHs), the most widely used pesticide worldwide, have been reported to impair organ function in humans and animals. However, research on the effect of maternal GBHs exposure on the intestinal health of offspring has received little attention. Based on the glyphosate limits defined by Codex Alimentarius Commission and European Food Safety Authority, this study established pregnant sow exposure models to investigate the influence of low (L-GBHs, 20 mg/kg) and high concentration GBHs (H-GBHs, 100 mg/kg) on the intestinal health of offspring and proposed the protective mechanism mediated by betaine. The results showed that the intestinal morphology and barrier function of suckling piglets were damaged in the H-GBHs group. H-GBHs increased the activity of glutathione peroxidase (GPX) and levels of methane dicarboxylic aldehyde (MDA), hydrogen peroxide (H2O2) and inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10)) in suckling piglets and activated Nrf2-mediated antioxidant signaling pathway. Subsequently, we found that exposure to H-GBHs triggered endoplasmic reticulum stress (ERS) and further induced apoptosis by upregulating the expression of Bcl-2-associated X protein (Bax), Caspase3, Caspase9 and Caspase12. Moreover, H-GBHs exposure perturbed mitochondrial membrane fusion and electron transport in mitochondrial respiratory chains by increasing the mRNA expression of mitofusin-2 (MFN2) and succinate dehydrogenase subunit A (SDHA), causing mitochondrial dysfunction. Dietary supplementation with betaine provided modest protection against GBHs-induced intestinal damage in suckling piglets. These findings reveal the mechanism of GBHs-induced intestinal damage in offspring, improving our understanding of the risk of GBHs exposure in pregnant women and suggesting the potential protective effects of betaine against GBHs poisoning.
Collapse
Affiliation(s)
- Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingbin Zou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Wentao Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianwei Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoyang Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Jia R, Han J, Liu X, Li K, Lai W, Bian L, Yan J, Xi Z. Exposure to Polypropylene Microplastics via Oral Ingestion Induces Colonic Apoptosis and Intestinal Barrier Damage through Oxidative Stress and Inflammation in Mice. TOXICS 2023; 11:127. [PMID: 36851002 PMCID: PMC9962291 DOI: 10.3390/toxics11020127] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 05/30/2023]
Abstract
Extensive environmental pollution by microplastics has increased the risk of human exposure to plastics. However, the biosafety of polypropylene microplastics (PP-MPs), especially of PP particles < 10 μm, in mammals has not been studied. Thus, here, we explored the mechanism of action and effect of exposure to small and large PP-MPs, via oral ingestion, on the mouse intestinal tract. Male C57BL/6 mice were administered PP suspensions (8 and 70 μm; 0.1, 1.0, and 10 mg/mL) for 28 days. PP-MP treatment resulted in inflammatory pathological damage, ultrastructural changes in intestinal epithelial cells, imbalance of the redox system, and inflammatory reactions in the colon. Additionally, we observed damage to the tight junctions of the colon and decreased intestinal mucus secretion and ion transporter expression. Further, the apoptotic rate of colonic cells significantly increased after PP-MP treatment. The expression of pro-inflammatory and pro-apoptosis proteins significantly increased in colon tissue, while the expression of anti-inflammatory and anti-apoptosis proteins significantly decreased. In summary, this study demonstrates that PP-MPs induce colonic apoptosis and intestinal barrier damage through oxidative stress and activation of the TLR4/NF-κB inflammatory signal pathway in mice, which provides new insights into the toxicity of MPs in mammals.
Collapse
Affiliation(s)
- Rui Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jie Han
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
12
|
Tan İŞ, Kılınç Y, Zaman BT, Bakırdere S. Deep eutectic solvent-based simultaneous complexation and preconcentration of nickel in Antarctic lake water samples for determination by flame atomic absorption spectrometry. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:309. [PMID: 36652146 DOI: 10.1007/s10661-023-10940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
This study presents a simple, sensitive, and accurate method for the determination of nickel by flame atomic absorption spectrometry (FAAS). Prior to instrumental measurement, a deep eutectic solvent-based simultaneous complexation and preconcentration (DES-SCP) method was used to preconcentrate nickel from aqueous solution into measurable quantities. The efficiency of the extraction method was enhanced by forming a non-ionic complex of nickel using dithizone as ligand. By mixing the ligand with the DES extractant, simultaneous complexation and preconcentration of nickel were achieved in a single step. Under optimum conditions of the extraction method, the limit of detection (LOD) and the limit of quantification (LOQ) values were found to be 2.4 and 8.0 ng/mL, respectively. With respect to direct FAAS measurement, the developed method enhanced the sensitivity of nickel determination by about 169 folds. The accuracy and applicability of the developed method were evaluated by performing spike recovery experiments with lake water sampled from Antarctica. Satisfactory recovery results in the range of 94.0-113.7% were recorded and this validated the developed method as an efficient and green alternative for nickel determination.
Collapse
Affiliation(s)
- İpek Şahin Tan
- Department of Chemistry, Yıldız Technical University, Istanbul, 34220, Türkiye
| | - Yağmur Kılınç
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, Institute of Science, Zonguldak, 67100, Türkiye
- Neutec Pharmaceutical, Yıldız Technical University Teknopark, Istanbul, 34220, Türkiye
| | - Buse Tuğba Zaman
- Department of Chemistry, Yıldız Technical University, Istanbul, 34220, Türkiye
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, Istanbul, 34220, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya, Ankara, 06670, Türkiye.
| |
Collapse
|
13
|
García-Niño WR, Ibarra-Lara L, Cuevas-Magaña MY, Sánchez-Mendoza A, Armada E. Protective activities of ellagic acid and urolithins against kidney toxicity of environmental pollutants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103960. [PMID: 35995378 DOI: 10.1016/j.etap.2022.103960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress and inflammation are two possible mechanisms related to nephrotoxicity caused by environmental pollutants. Ellagic acid, a powerful antioxidant phytochemical, may have great relevance in mitigating pollutant-induced nephrotoxicity and preventing the progression of kidney disease. This review discusses the latest findings on the protective effects of ellagic acid, its metabolic derivatives, the urolithins, against kidney toxicity caused by heavy metals, pesticides, mycotoxins, and organic air pollutants. We describe the chelating, antioxidant, anti-inflammatory, antifibrotic, antiautophagic, and antiapoptotic properties of ellagic acid to attenuate nephrotoxicity. Furthermore, we present the molecular targets and signaling pathways that are regulated by these antioxidants, and suggest some others that should be explored. Nevertheless, the number of reports is still limited to establish the efficacy of ellagic acid against kidney damage induced by environmental pollutants. Therefore, additional preclinical studies on this topic are required, as well as the development of well-designed clinical trials.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico.
| | - Luz Ibarra-Lara
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Mayra Yael Cuevas-Magaña
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Alicia Sánchez-Mendoza
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico
| | - Elisabeth Armada
- Department of Plant Molecular Biology, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
14
|
Wu B, Liu Y, Zhen J, Mou P, Li J, Xu Z, Song B. Protective effect of methionine on the intestinal oxidative stress and microbiota change induced by nickel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114037. [PMID: 36049335 DOI: 10.1016/j.ecoenv.2022.114037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Nickel is a common heavy metal pollutant in industrial areas and can cause oxidative damage to human and animal organs. As an essential amino acid with antioxidant function, methionine (Met) may protect the body from the oxidative stress induce by nickel, however, there is not enough research to study in this aspect. The study aims at investigating the effect of Met on the nickel-induced intestinal oxidative stress and further detected the gut microbiota changes. Mice were gavaged with quantitative NiCl2 (1.6 mg/ml, 0.25 ml) and fed with different doses of methionine in each group. The contents of intestinal oxidation product and antioxidant enzymes were determined by different biochemical quantitative methods, and the data showed that NiCl2 increased the content of intestinal oxidation product (MDA), and the antioxidant enzymes (GSH-Px, GR, SOD and CAT) were decreased. But this situation was alleviated in the group fed with additional methionine solution (0.5 mg/ml). In addition, we detected changes in the gut microbiota using high-throughput sequencing, the results showed that the structure of intestinal flora was disturbed by NiCl2, but methionine restored the germs with antioxidant capacity. Based on the results, we speculate that methionine can alleviate the impact of NiCl2 on the intestinal by enhancing the activity of antioxidant enzymes and the number of gut bacteria with anti-oxidation, suggesting that methionine as a nutritional additive may have the potential to treat nickel poisoning.
Collapse
Affiliation(s)
- Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, 637009 Nanchong, PR China; College of Life Sciences, China West Normal University, Nanchong 637000, PR China.
| | - Yiwei Liu
- College of Life Sciences, China West Normal University, Nanchong 637000, PR China.
| | - Jie Zhen
- Kunming University of Science and Technology School of Medicine, Kunming 650500, PR China.
| | - Pan Mou
- College of Life Sciences, China West Normal University, Nanchong 637000, PR China.
| | - Jia Li
- College of Life Sciences, China West Normal University, Nanchong 637000, PR China.
| | - Zhengyang Xu
- College of Life Sciences, China West Normal University, Nanchong 637000, PR China.
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, PR China.
| |
Collapse
|