1
|
Zhang Y, Li M, Li H. A vertical/horizontal graphene-based microneedle plant sensor for on-site detection of indole-3-acetic acid in vegetables. Talanta 2025; 283:127114. [PMID: 39467443 DOI: 10.1016/j.talanta.2024.127114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
Plant hormones are important regulators of crop growth and production. In this study, an in situ electrochemical sensor was successfully built using flat microelectrodes with horizontally and vertically grown graphene to detect the plant regulator indole-3-acetic acid (IAA) in plants. Vertical and horizontal graphene layers were prepared by electron-assisted hot-filament chemical vapor deposition. Vertical graphene nanosheets were grown on a horizontal graphene layer as sensing electrodes, and a microneedle sensor was assembled by combining Pt and Ti microelectrodes. The vertical/horizontal graphene (VHG) microneedle sensor can rapidly detect IAA levels in various plants in situ over a wide pH range of 4.0-9.0 and concentration range of 1-100 μM, with a minimum detection limit of 0.21 μM (3σ/S). Subsequently, this microneedle sensor was used to determine the IAA content in different tissues of cucumber and cauliflower stems with satisfactory results. The combination of VHG microelectrode arrays and small electrochemical workstations is useful for constructing portable, low-cost, on-site, and fast electrochemical sensing platforms for plant growth monitoring.
Collapse
Affiliation(s)
- Yangyang Zhang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, PR China.
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| |
Collapse
|
2
|
Sivaraman N, Kumar SMS, Thangamuthu R. Tuning the shell thickness of N-doped interconnected hollow carbon sphere for the electrochemical sensing of antibiotic drug chloramphenicol. Mikrochim Acta 2024; 191:552. [PMID: 39167265 DOI: 10.1007/s00604-024-06625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
N-doped hollow carbon spheres (NHCSs) with different shell thicknesses are constructed using various amounts of SiO2 precursor. An interconnected framework with diminished wall thickness ensures an efficient and continuous electron transport which helps to enhance the performance of NHCS. Improvement of the electrocatalytic performance was shown in the determination of antibiotic drug chloramphenicol (CAP) due to the unique hollow thin shell morphology, ample defect sites, accessible surface area, higher surface-to-volume ratio and an synergistic effect. Boosted electrocatalytic activity of 1.5 N-doped HCS (1.5 NHCS) was applied to detect CAP with a linear range and detection limit of 1-1150 µM and 0.098 µM (n = 3), respectively, with superior storage stability and considerable sensitivity. These results suggest that the proposed work can be successfully applied to the determination of CAP in milk and water samples.
Collapse
Affiliation(s)
- Narmatha Sivaraman
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute, Tamil Nadu, Karaikudi, 630 003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Sakarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute, Tamil Nadu, Karaikudi, 630 003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Rangasamy Thangamuthu
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute, Tamil Nadu, Karaikudi, 630 003, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
3
|
Sheikh TA, Ismail M, Rabbee MF, Khan H, Rafique A, Rasheed Z, Siddique A, Rafiq MZ, Khattak ZAK, Jillani SMS, Shahzad U, Akhtar MN, Saeed M, Alzahrani KA, Uddin J, Rahman MM, Verpoort F. 2D MXene-Based Nanoscale Materials for Electrochemical Sensing Toward the Detection of Hazardous Pollutants: A Perspective. Crit Rev Anal Chem 2024:1-46. [PMID: 39046991 DOI: 10.1080/10408347.2024.2379851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
MXenes (Mn+1XnTx), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects. Different characterization techniques like XRD, SEM, TEM, UV-Visible spectroscopy, and Raman spectroscopy have been used for the structural elucidation of 2D MXene. Current responses against applied potential were measured during the electrochemical sensing of the hazardous pollutants in an aqueous system using a variety of electroanalytical techniques, including differential pulse voltammetry, amperometry, square wave anodic stripping voltammetry, etc. In this review, a comprehensive discussion on structural patterns, synthesis, properties of MXene and their application for electrochemical detection of lethal pollutants like hydroquionone, phenol, catechol, mercury and lead, etc. are presented. This review will be helpful to critically understand the methods of synthesis and application of MXenes for the removal of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Ali Sheikh
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ismail
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Hira Khan
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ayesha Rafique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zeerak Rasheed
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amna Siddique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Zeeshan Rafiq
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Akhtar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A Alzahrani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- National Research Tomsk Polytechnic University, Tomsk, Russian
| |
Collapse
|
4
|
Jiang X, Yuan Y, Zhao X, Wan C, Duan Y, Wu C. Microbial synthesis of antimony sulfide to prepare catechol and hydroquinone electrochemical sensor by pyrolysis and carbonization. ENVIRONMENTAL RESEARCH 2024; 252:118860. [PMID: 38582422 DOI: 10.1016/j.envres.2024.118860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
The application of antimony sulfide sensors, characterized by their exceptional stability and selectivity, is of emerging interest in detection research, and the integration of graphitized carbon materials is expected to further enhance their electrochemical performance. This study represents a pioneering effort in the synthesis of carbon-doped antimony sulfide materials through the pyrolysis of the mixture of microorganisms and their synthetic antimony sulfide. The prepared materials are subsequently applied to electrochemical sensors for monitoring the highly toxic compounds catechol (CC) and hydroquinone (HQ) in the environment. Via cyclic voltammetry (CV) and impedance testing, we concluded that the pyrolytic product at 700 °C (Sb-700) demonstrated the best electrochemical properties. Differential pulse voltammetry (DPV) revealed impressive separation when utilizing Sb-700/GCE for simultaneous detection of CC and HQ, exhibiting good linearity within the concentration range of 0.1-140 μM. The achieved sensitivities of 24.62 μA μM-1 cm-2 and 22.10 μA μM-1 cm-2 surpassed those of most CC and HQ electrochemical sensors. Meanwhile, the detection limits for CC and HQ were as low as 0.18 μM and 0.16 μM (S/N = 3), respectively. Additional tests confirmed the good selectivity, reproducibility, and long-term stability of Sb-700/GCE, which was effective in detecting CC and HQ in tap water and river water, with recovery rates of 100.7%-104.5% and 96.5%-101.4%, respectively. It provides a method that combines green microbial synthesis and simple pyrolysis for the preparation of electrode materials in CC and HQ electrochemical sensors, and also offers a new perspective for the application of microbial synthesized materials.
Collapse
Affiliation(s)
- Xiaopeng Jiang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yue Yuan
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaomeng Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| | - Yutong Duan
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing, 100083, China
| | - Changyong Wu
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
He Y, Feng M, Zhang X, Huang Y. Metal-organic framework (MOF)-derived flower-like Ni-MOF@NiV-layered double hydroxides as peroxidase mimetics for colorimetric detection of hydroquinone. Anal Chim Acta 2023; 1283:341959. [PMID: 37977784 DOI: 10.1016/j.aca.2023.341959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Nanozymes are one of the ideal substitutes for natural enzymes because of their excellent chemical stability and simple preparation methods. However, due to the limited catalytic ability of most reported nanozymes, constructing nanomaterials with low cost and high activity is gradually becoming an exploration focus in the field of nanozymes. Heteroatom doping of metal-organic frameworks is one of potential approaches to design nanozymes with high catalytic performance. Due to their multiple valence states properties, V-doped metal-organic framework (MOF)-derived LDH is expected to be a good enzyme-like catalyst. To our knowledge, the V-doped MOF-derived LDH as nanozyme is not explored before. RESULTS We report the in-situ synthesis of NiV-layered double hydroxides (LDHs) on nickel-based MOF, i.e. Ni-MOF@NiV-LDHs. The MOF surface is covered by 2D nanosheets. This unique structural design increases the specific surface area of the material, enables more exposure of catalytic active sites to participate in reactions and accelerates the electron transfer rate. The Ni-MOF@NiV-LDHs have high peroxidase-like activity able to catalyze TMB oxidation by H2O2 via the generation of •OH and O2•-. Relative to Ni-MOF, the Ni-MOF@NiV-LDHs shows 47-fold peroxidase-like activity rise. It had good affinity to TMB and H2O2, with the Michaelis-Menten constants of 0.12 mM and 0.007 mM, respectively. The hydroquinone (HQ) consumed the reactive oxygen species generated in the TMB + H2O2+Ni-MOF@NiV-LDHs system to inhibit the TMB oxidation. On this basis, a sensitive and rapid assay for determining HQ was developed, with a linear range of 0.50-70 μM and a LOD of 0.37 μM. SIGNIFICANCE This work provided some clues for the further development of novel nanozymes with high catalytic performance via a strategy of heteroatom doping. And the constructed colorimetric analysis method was successfully utilized for the determination of HQ in actual waters, which has the potential for practical application in the analysis of environmental pollutants.
Collapse
Affiliation(s)
- Yin He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Min Feng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Xue Y, Noroozifar M, Sullan RMA, Kerman K. Electrochemical simultaneous determination of hydroquinone, catechol, bisphenol A, and bisphenol S using a novel mesoporous nickel-modified carbon sensor. CHEMOSPHERE 2023; 342:140003. [PMID: 37648164 DOI: 10.1016/j.chemosphere.2023.140003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
The widespread occurrence of endocrine disruptor compounds in wastewater has garnered significant attention owing to their toxicity, even at low concentrations, and their persistence in the water body. Among various analytical techniques, electrochemical sensors become popular for the environmental monitoring of water pollutants due to their low cost, rapid detection, high sensitivity, and selectivity. In this study, the mesoporous Ni (MNi) material was synthesized with an innovative method using Pluronic™ F-127 as a soft template and applied as a modifier for the simultaneous electrochemical sensing of hydroquinone (HQ), catechol (CC), bisphenol A (BPA), and bisphenol S (BPS). MNi with high porosity efficiently enhanced the redox-active surface area and conductivity of the glassy carbon electrode contributing to a significantly improved sensitivity in the detection of target chemicals. The pore size and surface area of MNi were estimated based on atomic force microscopy and Brunauer Emmett and Teller techniques to be ∼14.2 nm and 31.1 m2 g-1, respectively. The limit of detection for HQ, CC, BPA, and BPS was determined to be 5.3, 5.7, 5.6, and 61.5 nM, respectively. The electrochemical sensor presented in this study holds promise as a platform for developing portable and miniaturized tools offering the rapid and sensitive detection of these hazardous phenolic compounds in environmental water samples.
Collapse
Affiliation(s)
- Yilei Xue
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Ruby May A Sullan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
7
|
Wang F, Han Y, Feng X, Xu R, Li A, Wang T, Deng M, Tong C, Li J, Wei Z. Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries. Int J Mol Sci 2023; 24:ijms24087291. [PMID: 37108464 PMCID: PMC10138428 DOI: 10.3390/ijms24087291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
The most promising energy storage devices are lithium-sulfur batteries (LSBs), which offer a high theoretical energy density that is five times greater than that of lithium-ion batteries. However, there are still significant barriers to the commercialization of LSBs, and mesoporous carbon-based materials (MCBMs) have attracted much attention in solving LSBs' problems, due to their large specific surface area (SSA), high electrical conductivity, and other unique advantages. The synthesis of MCBMs and their applications in the anodes, cathodes, separators, and "two-in-one" hosts of LSBs are reviewed in this study. Most interestingly, we establish a systematic correlation between the structural characteristics of MCBMs and their electrochemical properties, offering recommendations for improving performance by altering the characteristics. Finally, the challenges and opportunities of LSBs under current policies are also clarified. This review provides ideas for the design of cathodes, anodes, and separators for LSBs, which could have a positive impact on the performance enhancement and commercialization of LSBs. The commercialization of high energy density secondary batteries is of great importance for the achievement of carbon neutrality and to meet the world's expanding energy demand.
Collapse
Affiliation(s)
- Fangzheng Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Yuying Han
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Xin Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Rui Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Ang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Mingming Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Cheng Tong
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| |
Collapse
|
8
|
Liu Y, Zhang Z, Li Y, Shi F, Ai Y, Wang B, Zhang S, Zhang X, Sun W. Electrochemical detection of hydroquinone based on marine biomass carbon from shrimp shells as electrode modifier. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
9
|
In-situ construction of N and P doped Hollow Sphere Carbon for Electrochemical Sensing of Antibiotic Drug from Poultry Sustenance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|