1
|
Agurokpon D, Louis H, Benjamin I, Godfrey OC, Ghotekar S, Adeyinka AS. Impact of Polythiophene ((C 4H 4S) n; n = 3, 5, 7, 9) Units on the Adsorption, Reactivity, and Photodegradation Mechanism of Tetracycline by Ti-Doped Graphene/Boron Nitride (Ti@GP_BN) Nanocomposite Materials: Insights from Computational Study. ACS OMEGA 2023; 8:42340-42355. [PMID: 38024685 PMCID: PMC10652268 DOI: 10.1021/acsomega.3c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Abstract
This study addresses the formidable persistence of tetracycline (TC) in the environment and its adverse impact on soil, water, and microbial ecosystems. To combat this issue, an innovative approach by varying polythiophene ((C4H4S)n; n = 3, 5, 7, 9) units and the subsequent interaction with Ti-doped graphene/boron nitride (Ti@GP_BN) nanocomposites was applied as catalysts for investigating the molecular structure, adsorption, excitation analysis, and photodegradation mechanism of tetracycline within the framework of density functional theory (DFT) at the B3LYP-gd3bj/def2svp method. This study reveals a compelling correlation between the adsorption potential of the nanocomposites and their corresponding excitation behaviors, particularly notable in the fifth and seventh units of the polythiophene configuration. These units exhibit distinct excitation patterns, characterized by energy levels of 1.3406 and 924.81 nm wavelengths for the fifth unit and 1.3391 and 925.88 nm wavelengths for the seventh unit. Through exploring deeper, the examination of the exciton binding energy emerges as a pivotal factor, bolstering the outcomes derived from both UV-vis transition analysis and adsorption exploration. Notably, the calculated exciton binding energies of 0.120 and 0.103 eV for polythiophene units containing 5 and 7 segments, respectively, provide compelling confirmation of our findings. This convergence of data reinforces the integrity of our earlier analyses, enhancing our understanding of the intricate electronic and energetic interplay within these intricate systems. This study sheds light on the promising potential of the polythiophene/Ti-doped graphene/boron nitride nanocomposite as an efficient candidate for TC photodegradation, contributing to the advancement of sustainable environmental remediation strategies. This study was conducted theoretically; hence, experimental studies are needed to authenticate the use of the studied nanocomposites for degrading TC.
Collapse
Affiliation(s)
- Daniel
C. Agurokpon
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, Calabar 540221, Nigeria
- Centre for
Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital
and Research Institute, Chettinad Academy
of Research and Education, Kelambakkam 603103, Tamil Nadu India
| | - Innocent Benjamin
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Obinna C. Godfrey
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Biochemistry, University of Calabar, Calabar 540221, Nigeria
| | - Suresh Ghotekar
- Department
of Chemistry, Smt. Devkiba Mohansinhji, Chauhan College of Commerce
and Science, University of Mumbai, Silvassa 396, India
| | - Adedapo S. Adeyinka
- Department
of Chemical Sciences, University of Johannesburg, Auckland Park 2006, South-Africa
| |
Collapse
|
2
|
Chin JY, Ahmad AL, Low SC. Antibiotics oxytetracycline removal by photocatalyst titanium dioxide and graphitic carbon nitride in aquaculture wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118231. [PMID: 37247545 DOI: 10.1016/j.jenvman.2023.118231] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
The surge in the use of antibiotics, especially in aquaculture, has led to development of antibiotic resistance genes, which will harm environmental and public health. One of the most commonly used antibiotics in aquaculture is oxytetracycline (OTC). Employing photocatalysis, this study compared OTC degradation efficiency of two different types of common photocatalysts, TiO2 and graphitic carbon nitride (GCN) in terms of their photochemical properties and underlying photocatalytic mechanism. For reference purpose, self-synthesized GCN from urea precursor (GCN-Urea) and commercial GCN (GCN-Commercial) were both examined. OTC adsorption-photocatalysis removal rates in pure OTC solution by TiO2, GCN-Urea and GCN-Commercial were attained at 95%, 60% and 40% respectively. Photochemical properties evaluated included light absorption, band gap, valence and conduction band positions, photoluminescence, cyclic voltammetry, BET surface area and adsorption capability of the photocatalysts. Through the evaluations, this study provides novel insights towards current state-of-the-art heterogeneous photocatalytic processes. The electron-hole recombination examined by photoluminescence is not the key factor influencing the photocatalytic efficacies as commonly discussed. On the contrary, the dominating factors governing the higher OTC degradation efficiency of TiO2 compared to GCN are the high mobility of electrons that leads to high redox capability and the high pollutant-photocatalyst affinity. These claims are proven by 86% and 40% more intense anodic and cathodic cyclic voltammetry curve peaks of TiO2 as compared to both GCNs. OTC also demonstrated 1.7 and 2.3 times higher affinity towards TiO2 than GCN-Urea and GCN-Commercial. OTC removal by TiO2 in real aquaculture wastewater only achieved 50%, due to significant inhibition effect by dissolved solids, dissolved organic matters and high ionic contents in the wastewater.
Collapse
Affiliation(s)
- Jing Yi Chin
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Wannakan K, Khansamrit K, Senasu T, Nanan S. Ultrasound-Assisted Synthesis of a ZnO/BiVO 4 S-Scheme Heterojunction Photocatalyst for Degradation of the Reactive Red 141 Dye and Oxytetracycline Antibiotic. ACS OMEGA 2023; 8:4835-4852. [PMID: 36777609 PMCID: PMC9909798 DOI: 10.1021/acsomega.2c07020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The preparation of novel sunlight active photocatalysts for complete removal of pollutants from aqueous solutions is a vital research topic in environmental protection. The present work reports the synthesis of a ZnO/BiVO4 S-scheme heterojunction photocatalyst for degradation of the reactive red dye and oxytetracycline antibiotic in wastewater. ZnO and BiVO4 were first fabricated by a hydrothermal technique, and then, the ZnO/BiVO4 heterostructure was synthesized using an ultrasonic route. An increase of the surface area, compared to that of ZnO, was found in ZnO/BiVO4. The enhancement of charge separation efficiency at the interface was obtained so that a remarkable enhancement of the photocatalytic performance was detected in the prepared heterojunction photocatalyst. Complete detoxification of harmful pollutants was achieved by using the economical solar energy. The removal of the pollutants follows the first-order reaction with the highest rate constant of 0.107 min-1. The stability of the prepared photocatalyst was detected after five cycles of use. The ZnO/BiVO4 S-scheme heterostructure photocatalyst still provides high photoactivity even after five times of use. Hydroxyl radicals play an important role in the removal of the pollutant. This work demonstrates a new route to create the step-scheme heterojunction with high photoactivity for complete removal of the toxic dye and antibiotic in the environment.
Collapse
Affiliation(s)
- Khemika Wannakan
- Materials Chemistry Research Center,
Department of Chemistry and Center of Excellence for Innovation in
Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen40002, Thailand
| | - Kamonpan Khansamrit
- Materials Chemistry Research Center,
Department of Chemistry and Center of Excellence for Innovation in
Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen40002, Thailand
| | - Teeradech Senasu
- Materials Chemistry Research Center,
Department of Chemistry and Center of Excellence for Innovation in
Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen40002, Thailand
| | - Suwat Nanan
- Materials Chemistry Research Center,
Department of Chemistry and Center of Excellence for Innovation in
Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen40002, Thailand
| |
Collapse
|