1
|
Yin H, Pu B, Jiang H, He H, Han T, Wang W, Yu C, Wang Z, Li X. Highly Active MXene Quantum Dots/CuSe n-p Plasmonic Heterostructures for Ultrafast Photocatalytic Removal of Cr(VI) under Full Solar Spectrum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24484-24493. [PMID: 39523977 DOI: 10.1021/acs.langmuir.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Identifying effective plasmonic photocatalysts exhibiting robust activities across the entire solar spectrum poses a significant challenge. CuSe, with its local surface plasmon resonance (LSPR) effect, has garnered attention as a prospective plasmonic photocatalyst. However, severe charge recombination and insufficient light absorption limit its photocatalytic performance. To enhance the performance, constructing CuSe-based n-p plasmonic semiconductor heterostructures is a potential strategy. MXene quantum dots (MQDs), a kind of n-type plasmonic semiconductor with metallic conductivity and a high LSPR effect, are a promising candidate to couple with p-type CuSe. According to the complementary principle, we designed a 0D/2D MQDs/CuSe n-p plasmonic semiconductor, achieved by wrapping CuSe nanosheets with MQDs. This n-p plasmonic heterostructure exhibits a synergistic effect on an enhanced electronic field, facilitating charge transfer and separation, thereby enhancing charge excitation, carrier migration, and photothermal effect. Furthermore, optimizing the MQD loading content leads to an ultrafast photocatalytic reaction rate, achieving 100% Cr(VI) reduction efficiency within just 60 min with a reaction kinetics of 0.069 min-1, surpassing the performance of bare CuSe. Our work presents a promising approach for developing advanced n-p plasmonic heterostructures based on MQDs for wastewater treatment and other photocatalytic applications.
Collapse
Affiliation(s)
- Hongdie Yin
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
- Sichuan Tianyu Oleochemical Co., Ltd., Luzhou, Sichuan 646300, China
| | - Biao Pu
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Hanmei Jiang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Huichao He
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Tao Han
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenrong Wang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chaojun Yu
- Jidong Cement Bishan Co., Ltd., Chongqing 402760, China
| | - Zili Wang
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xingxin Li
- College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
2
|
Rathina Gesav VR, Geetha A, Vasugi S, Balachandran S, Ilangovar IGK. Emerging Two-Dimensional Ti3C2-BiOCl Nanoparticles for Excellent Antimicrobial and Antioxidant Properties. Cureus 2024; 16:e65080. [PMID: 39171070 PMCID: PMC11337143 DOI: 10.7759/cureus.65080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction MXenes (Ti3C2) represent a group of two-dimensional inorganic compounds, produced through a top-down exfoliation method. They comprise ultra-thin layers of transition metal carbides, or carbonitrides, and exhibit hydrophilic properties on their surfaces. Utilizing Ti3C2 BiOCl nanoparticles for their antimicrobial and antioxidant attributes involves enhancing synthesis, processing, and characterization techniques. Materials and method To prepare Ti3C2 MXene, dissolve 1.6 g of LiF in 20 ml of 9M HCl. Slowly add 1 g of Ti3AlC2 (titanium aluminum carbide) powder to the solution while stirring. Etch at 35°C for 24 h to remove Al layers from Ti3AlC2, leaving Ti3C2 layers. Wash the mixture with distilled water and ethanol until the pH is around 6. Collect the washed sediment by centrifugation and sonicate it in distilled water for 1 h. Centrifuge to remove unexfoliated particles. For BiOCl synthesis, dissolve 2 mmol of Bi(NO3)3·5H2O (bismuth nitrate pentahydrate) in 10 ml of 2M HCl (hydrochloric acid) with 0.5 g of PVP (polyvinylpyrrolidone). Transfer the solution to a Teflon-lined autoclave, fill it with distilled water up to 80%, and heat at 160°C for 24 h. Collect the precipitate by centrifugation, wash, and dry at 60°C for 12 h. Disperse BiOCl nanoparticles in distilled water, sonicate for 30 min, add Ti3C2 MXene dispersion, stir for 2 h, collect, wash, dry, and calcine at 400°C for 2 h. Result The Scanning Electron Microscope (SEM) utilizes electrons, rather than light, to generate highly magnified images. Energy Dispersive X-ray Spectroscopy (EDS) complements SEM by analyzing the X-ray spectrum emitted when a solid sample is bombarded with electrons, enabling localized chemical analysis. In SEM imaging, incorporating an X-ray spectrometer allows for both element mapping and point analysis. The SEM image of the prepared samples reveals accordion-like multilayer structures in BiOCl, characterized by thin sheet-like structures with numerous pores. EDS, relying on X-ray emissions from electron bombardment, facilitates detailed chemical analysis at specific locations within the sample. Conclusion Our research has shed light on the synthesis and characterization processes of two-dimensional Ti3C2 BiOCl nanoparticles, revealing their remarkable antimicrobial and antioxidant properties.
Collapse
Affiliation(s)
- V Ra Rathina Gesav
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - A Geetha
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - S Vasugi
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - S Balachandran
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| | - I G K Ilangovar
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Adel Hamza M, Abd El-Rahman SA, Ramadan SK, Ezz-Elregal EEM, Rizk SA, Abou-Gamra ZM. The enhanced visible-light-driven photocatalytic performance of nanocrystalline TiO2 decorated by quinazolinone-photosensitizer toward photocatalytic treatment of simulated wastewater. J Photochem Photobiol A Chem 2024; 452:115599. [DOI: 10.1016/j.jphotochem.2024.115599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
|
4
|
Sharma M, Singh R, Sharma A, Krishnan V. Tuning of surface oxygen vacancies for enhancing photocatalytic performance under visible light irradiation in Sb 2WO 6 nanostructures. Dalton Trans 2024; 53:6731-6746. [PMID: 38530659 DOI: 10.1039/d4dt00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Tuning of vacancies in photocatalytic materials has emerged as a versatile strategy to enhance visible light absorption and photocatalytic activity. In this study, surface oxygen vacancies (defects) were incorporated on antimony tungstate to boost its photocatalytic activity, which was examined by studying the degradation of model pollutants under visible light irradiation. Specifically, a two-to-three-fold increase in photocatalytic activity was observed for oxygen vacancy-rich antimony tungstate in comparison to its pristine counterpart. This improvement in the photocatalytic performance can be attributed to the presence of oxygen vacancies in the material, which leads to an enhanced absorption of light, decrease in the recombination of charge carriers, and increase in the number of active sites. In addition, owing to the nature of the surface charge present, the photocatalysts were found to be selective for the degradation of cationic pollutants in comparison to anionic and neutral pollutants, and can thus be used for the separation of a mixture of pollutants. Furthermore, scavenger studies illustrate that holes play a major role in the photocatalytic degradation of pollutants. Moreover, the excellent photostability of oxygen vacancy-rich antimony tungstate over three consecutive cycles demonstrates its potential as a good photocatalyst for the degradation of pollutants. Overall, this study demonstrates that the engineering of surface vacancies on perovskite oxide materials can render them as efficient single component photocatalysts for environmental remediation applications.
Collapse
Affiliation(s)
- Manisha Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India.
| | - Rahul Singh
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India.
| | - Anitya Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India.
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India.
| |
Collapse
|
5
|
Zhu B, Sun J, Zhao Y, Zhang L, Yu J. Construction of 2D S-Scheme Heterojunction Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310600. [PMID: 37988721 DOI: 10.1002/adma.202310600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Semiconductor photocatalytic technology holds immense promise for converting sustainable solar energy into chemically storable energy, with significant applications in the realms of energy and the environment. However, the inherent issue of rapid recombination of photogenerated electrons and holes hinders the performance of single photocatalysts. To overcome this challenge, the construction of 2D S-scheme heterojunction photocatalysts emerges as an effective strategy. The deliberate design of dimensionality ensures a substantial interfacial area; while, the S-scheme charge transfer mechanism facilitates efficient charge separation and maximizes redox capabilities. This review commences with a fresh perspective on the charge transfer mechanism in S-scheme heterojunctions, followed by a comprehensive exploration of preparation methods and characterization techniques. Subsequently, the recent advancements in 2D S-scheme heterojunction photocatalysts are summarized. Notably, the mechanism behind activity enhancement is elucidated. Finally, the prospects for the development of 2D S-scheme photocatalysts are presented.
Collapse
Affiliation(s)
- Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jian Sun
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Yanyan Zhao
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
6
|
Khan NA, Imran M, Akhtar MN, Hussain S, Khan MA, Shami A, Iqbal H. Remediation of organic pollutant from the aqueous environment using in-house fabricated polyaniline-based hybrid composite (PANI-MnPBA/NiCoMnS) materials. CHEMOSPHERE 2024; 350:141077. [PMID: 38163468 DOI: 10.1016/j.chemosphere.2023.141077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/16/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Polyaniline-based hybrid material (PANI-MnPBA/NiCoMnS) was prepared by hydrothermal-solvothermal approach. Synthesized hybrid material was characterized through FTIR-spectroscopy, p-XRD, SEM, EDX, BET, and Zetasizer techniques. Hybrid material as adsorbent for removal of Congo red (CR) from water system showed excellent results such as 98 % removal efficiency and 254 mg/g adsorption capacity. Furthermore, various studies like adsorption isothermal, kinetic, thermodynamic, and statistical analysis were performed to understand the adsorption phenomenon. From various kinetic models, pseudo-first and second-order kinetic models, intra-particle and liquid film diffusion kinetic models, pseudo-first-order kinetic model, and liquid-film diffusion kinetic model both are most suitable for explaining the adsorption phenomenon due to the greater value of R2 (0.955) for CR. According to these kinetic models, physio-sorption and diffusion play a basic role in the adsorption of CR. Moreover, ΔG (-1779.508 kJ mol-1) and ΔH (61,760.889 kJ mol-1) values explained the spontaneous and exothermic nature of the adsorption process, respectively. Furthermore, for support of the adsorption mechanism via electrostatic attractions before and after the adsorption process FTIR results of as-synthesized adsorbent were measured (NH peaks before 3668.88, after 3541.41 cm-1). These results confirm electrostatic attraction for the adsorption process. Finally, the statistical model was added (n < 1), according to this model, adsorption follows a multi-anchorage approach and adsorbent contains enough sites for adsorption of CR.
Collapse
Affiliation(s)
- Naseem Ahmad Khan
- Division of Inorganic Chemistry, Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Imran
- Division of Inorganic Chemistry, Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Nadeem Akhtar
- Division of Inorganic Chemistry, Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shabbir Hussain
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Azhar Khan
- Institute of Physics, Baghdad-Ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Hafiz Iqbal
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
7
|
Chen L, Chuang Y, Nguyen TB, Chen CW, Dong CD. Enhanced photocatalytic activity of tin oxide-doped molybdenum disulfide nanohybrids under visible light irradiation: Antibiotics elimination, heavy metal reduction and antibacterial behavior. ENVIRONMENTAL RESEARCH 2023; 238:117259. [PMID: 37775006 DOI: 10.1016/j.envres.2023.117259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Nano-heterojunction photocatalytic can operate removal of pollutants, which is basic for the sustainable development of a clean environment. Herein, we propose a novel MoS2/SnO2 (MS) S-scheme heterojunction by a facile hydrothermal process, which is cheap, easily available, highly visible-light response, and good stability. The MS nano-heterojunction suggested superior performance with the photocatalytic degradation of 97.6% within 100 min for ciprofloxacin (CIP) removal, which was 5.74 and 4.88 folds higher than that of pristine MoS2 and SnO2, respectively. The fabricated MS photocatalysts displayed outstanding photocatalytic efficiency toward Cr (VI) reduction. The removal capability of Cr (VI) reached up to 92.5% within 60 min. The photodegradation efficiency was 5.2 folds that of pristine MoS2. In addition, the antibacterial performance approximately approached 100% for E. coli within 10 min, which was more apparent than the others. A series of excellent results implied that MS nano-heterojunction had a high ultraviolet and visible light absorbance, larger specific surface area, outstanding electron-hole pairs migration and higher capability of photo-response electrons and holes separation rate. This system offers a novel window into the evolution of nano-heterojunction for wastewater treatment and solar energy harvesting applications.
Collapse
Affiliation(s)
- Linjer Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Yuliv Chuang
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
8
|
Sharaf Aldeen EM, Jalil AA, Mim RS, Hatta AH, Hazril NIH, Chowdhury A, Hassan NS, Rajendran S. Environmental remediation of hazardous pollutants using MXene-perovskite-based photocatalysts: A review. ENVIRONMENTAL RESEARCH 2023; 234:116576. [PMID: 37423362 DOI: 10.1016/j.envres.2023.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Photocatalysis utilizing semiconductors offer a cost-effective and promising solution for the removal of pollutants. MXene and perovskites, which possess desirable properties such as a suitable bandgap, stability, and affordability, have emerged as a highly promising material for photocatalytic activity. However, the efficiency of MXene and perovskites is limited by their fast recombination rates and inadequate light harvesting abilities. Nonetheless, several additional modifications have been shown to enhance their performance, thereby warranting further exploration. This study delves into the fundamental principles of reactive species for MXene-perovskites. Various methods of modification of MXene-perovskite-based photocatalysts, including Schottky junction, Z-scheme and S-scheme are analyzed with regard to their operation, differences, identification techniques and reusability. The assemblance of heterojunctions is demonstrated to enhance photocatalytic activity while also suppressing charge carrier recombination. Furthermore, the separation of photocatalysts through magnetic-based methods is also investigated. Consequently, MXene-perovskite-based photocatalysts are seen as an exciting emerging technology that necessitates further research and development.
Collapse
Affiliation(s)
- E M Sharaf Aldeen
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia.
| | - R S Mim
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A H Hatta
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - N I H Hazril
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - A Chowdhury
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - N S Hassan
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia
| | - S Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile
| |
Collapse
|
9
|
Guo W, Guo T, Zhang Y, Yin L, Dai Y. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: A review. CHEMOSPHERE 2023; 339:139486. [PMID: 37499803 DOI: 10.1016/j.chemosphere.2023.139486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
In the current era of severe energy and environmental crises, the need for efficient and sustainable methods to control pollution and promote resource recycling has become increasingly important. Photocatalytic degradation of pollutants and simultaneous production of clean energy is one such approach that has garnered significant attention in recent years. The principle of photocatalysis involves the development of efficient photocatalysts and the efficient utilization of solar energy. The use of organic contaminants can enhance the photocatalytic reactions, leading to the sustainable generation of clean energy. Herein, we provide a comprehensive review of the latest advances in the application of photocatalytic synergized clean energy production in the environmental field. This review highlights the latest developments and achievements in this field, highlighting the potential for this approach to revolutionize the way we approach environmental pollution control and resource recycling. The review focuses on (1) the mechanism of photocatalytic degradation and synergistic energy production, (2) photocatalysts and synthesis strategies, (3) photocatalytic carbon dioxide reduction, (4) pollutant degradation, and (5) hydrogen and electricity production. In addition, perspectives on key challenges and opportunities in photocatalysis and clean energy for future developments are proposed. This review provides a roadmap for future research directions and innovations of photocatalysis that could contribute to the development of more sustainable and cleaner energy solutions.
Collapse
Affiliation(s)
- Wenqing Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Tao Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Yuanzheng Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Yunrong Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
10
|
Ding Y, Qin F, Guo J, Gong D, Li Q, Wang X, Tan X, Liu H, Huang Z. Visible-light-driven Oxygen Vacancy and Carbon Doping of C@TiO 2-x Photocatalyst for Enhanced Pollutants Degradation Performance. Chemphyschem 2023; 24:e202300183. [PMID: 37285235 DOI: 10.1002/cphc.202300183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Oxygen Vacancy (OVs) and carbon doping of the photocatalyst body will significantly enhance the photocatalytic efficiency. However, synchronous regulation of these two aspects is challenging. In this paper, a novel C@TiO2-x photocatalyst was designed by coupling the surface defect and doping engineering of titania, which can effectively remove rhodamine B (RhB) and has a relatively high performance with wide pH range, high photocatalytic activity and good stability. Within 90 minutes, the photocatalytic degradation rate of RhB by C@TiO2-x (94.1 % at 20 mg/L) is 28 times higher than that of pure TiO2 . Free radical trapping experiments and electron spin resonance techniques reveal that superoxide radicals (⋅O2- ) and photogenerated holes (h+ ) play key roles in the photocatalytic degradation of RhB. This study demonstrates the possibility of regulating photocatalysts to degrade pollutants in wastewater based on an integrated strategy.
Collapse
Affiliation(s)
- Yifan Ding
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Fanghong Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Jialin Guo
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Danming Gong
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Qiufei Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Xiangyi Wang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Xiuniang Tan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Haibo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
| | - Zaiyin Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| |
Collapse
|
11
|
Kumar A, Sharma M, Sheoran S, Jaiswal S, Patra A, Bhattacharya S, Krishnan V. Tailoring defects in SrTiO 3 by one step nanoarchitectonics for realizing photocatalytic nitrogen fixation in pure water. NANOSCALE 2023. [PMID: 37378646 DOI: 10.1039/d3nr01982a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Surface contamination of materials by nitrogenous impurities is a major problem that can bias the quantification of ammonia in photocatalytic N2 fixation reactions. In this work, SrTiO3 nanocubes were prepared by using a nitrogenous precursor and engineered with Ti3+ sites and oxygen vacancy defects in a one-step solvothermal approach. It was observed that the synthesized materials were containing surface nitrogenous impurities and therefore a rigorous cleaning procedure was adopted to eliminate them to the best extent. The contribution of unavoidable surface impurities was deduced in the form of adventitious NH3 by employing control experiments and a realistic photocatalytic NH3 generation was achieved. It was found that pristine SrTiO3 showed no photocatalytic activity, whereas one of the defected SrTiO3 materials showed the highest NH3 formation under natural sunlight in pure water, which was ascribed to the tuned defect sites, enhanced surface area and efficient separation of photogenerated charges. Based on the experimental results, a stringent protocol has been suggested for materials synthesis while working with nitrogenous precursors and for subsequent photocatalytic N2 fixation experiments. Thus, the present study provides a simple and affordable procedure for catalyst synthesis for the studied application and expands the scope of perovskite oxide materials to fabricate efficient photocatalysts for sustainable NH3 production.
Collapse
Affiliation(s)
- Ashish Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
- Department of Chemistry, Sardar Patel University Mandi, Mandi 175001, Himachal Pradesh, India
| | - Manisha Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Sajjan Sheoran
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Shilpi Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India.
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India.
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| |
Collapse
|
12
|
Cherif Y, Azzi H, Sridharan K, Ji S, Choi H, Allan MG, Benaissa S, Saidi-Bendahou K, Damptey L, Ribeiro CS, Krishnamurthy S, Nagarajan S, Maroto-Valer MM, Kuehnel MF, Pitchaimuthu S. Facile Synthesis of Gram-Scale Mesoporous Ag/TiO 2 Photocatalysts for Pharmaceutical Water Pollutant Removal and Green Hydrogen Generation. ACS OMEGA 2023; 8:1249-1261. [PMID: 36643558 PMCID: PMC9835632 DOI: 10.1021/acsomega.2c06657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
This work demonstrates a two-step gram-scale synthesis of presynthesized silver (Ag) nanoparticles impregnated with mesoporous TiO2 and evaluates their feasibility for wastewater treatment and hydrogen gas generation under natural sunlight. Paracetamol was chosen as the model pharmaceutical pollutant for evaluating photocatalytic performance. A systematic material analysis (morphology, chemical environment, optical bandgap energy) of the Ag/TiO2 photocatalyst powder was carried out, and the influence of material properties on the performance is discussed in detail. The experimental results showed that the decoration of anatase TiO2 nanoparticles (size between 80 and 100 nm) with 5 nm Ag nanoparticles (1 wt %) induced visible-light absorption and enhanced charge carrier separation. As a result, 0.01 g/L Ag/TiO2 effectively removed 99% of 0.01 g/L paracetamol in 120 min and exhibited 60% higher photocatalytic removal than pristine TiO2. Alongside paracetamol degradation, Ag/TiO2 led to the generation of 1729 μmol H2 g-1 h-1. This proof-of-concept approach for tandem pollutant degradation and hydrogen generation was further evaluated with rare earth metal (lanthanum)- and nonmetal (nitrogen)-doped TiO2, which also showed a positive response. Using a combination of ab initio calculations and our new theory model, we revealed that the enhanced photocatalytic performance of Ag/TiO2 was due to the surface Fermi-level change of TiO2 and lowered surface reaction energy barrier for water pollutant oxidation. This work opens new opportunities for exploiting tandem photocatalytic routes beyond water splitting and understanding the simultaneous reactions in metal-doped metal oxide photocatalyst systems under natural sunlight.
Collapse
Affiliation(s)
- Yassine Cherif
- Laboratoire
de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, BP 119, Tlemcen13000, Algeria
| | - Hajer Azzi
- Laboratoire
de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, BP 119, Tlemcen13000, Algeria
- Institut
des Sciences et de la Technologie, Université d’Ain
Témouchent, BP
284, 46000Ain Témouchent, Algeria
| | - Kishore Sridharan
- Department
of Nanoscience and Technology, School of Physical Sciences, University of Calicut, P. O. Thenhipalam673635, India
| | - Seulgi Ji
- Theoretical
Materials & Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939Cologne, Germany
| | - Heechae Choi
- Theoretical
Materials & Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939Cologne, Germany
| | - Michael G. Allan
- Department
of Chemistry, Swansea University, Singleton Park, SwanseaSA2 8PP, United Kingdom
| | - Sihem Benaissa
- Institut
des Sciences et de la Technologie, Université d’Ain
Témouchent, BP
284, 46000Ain Témouchent, Algeria
| | - Karima Saidi-Bendahou
- Laboratoire
de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, BP 119, Tlemcen13000, Algeria
| | - Lois Damptey
- School of
Engineering & Innovation, The Open University, Walton Hall, Milton KeynesMK7 6AA, United Kingdom
| | - Camila Silva Ribeiro
- School of
Engineering & Innovation, The Open University, Walton Hall, Milton KeynesMK7 6AA, United Kingdom
| | - Satheesh Krishnamurthy
- School of
Engineering & Innovation, The Open University, Walton Hall, Milton KeynesMK7 6AA, United Kingdom
| | - Sanjay Nagarajan
- Department
of Chemical Engineering, University of Bath, BathBA2 7AY, United Kingdom
| | - M. Mercedes Maroto-Valer
- Research
Centre for Carbon Solutions, Institute of Mechanical and Processing
Engineering, School of Engineering & Physical Science, Heriot-Watt University, EdinburghEH14 4AS, United Kingdom
| | - Moritz F. Kuehnel
- Department
of Chemistry, Swansea University, Singleton Park, SwanseaSA2 8PP, United Kingdom
- Fraunhofer
Institute for Wind Energy Systems IWES, Am Haupttor 4310, 06237Leuna, Germany
| | - Sudhagar Pitchaimuthu
- Research
Centre for Carbon Solutions, Institute of Mechanical and Processing
Engineering, School of Engineering & Physical Science, Heriot-Watt University, EdinburghEH14 4AS, United Kingdom
| |
Collapse
|
13
|
Song Z, Liu Y, Zhang B, Song S, Zhou Z, Huang Y, Zhao Z. Magnetic grinding synthesis of copper sulfide-based photocatalytic composites for the degradation of organic dyes under visible light. NEW J CHEM 2023. [DOI: 10.1039/d2nj05397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CuS based composites prepared by magnetic grinding method with metal and sulfur powder as raw materials have photocatalytic activity.
Collapse
Affiliation(s)
- Zhangbin Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Zhen Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Yaoguo Huang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| |
Collapse
|