1
|
Zhang Y, Liu L, Zhang S, Zou X, Liu J, Guo J, Teng Y, Zhang Y, Duan H. Monitoring and warning for ammonia nitrogen pollution of urban river based on neural network algorithms. ANAL SCI 2024; 40:1867-1879. [PMID: 38909351 DOI: 10.1007/s44211-024-00622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Ammonia nitrogen (AN) pollution frequently occurs in urban rivers with the continuous acceleration of industrialization. Monitoring AN pollution levels and tracing its complex sources often require large-scale testing, which are time-consuming and costly. Due to the lack of reliable data samples, there were few studies investigating the feasibility of water quality prediction of AN concentration with a high fluctuation and non-stationary change through data-driven models. In this study, four deep-learning models based on neural network algorithms including artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU) were employed to predict AN concentration through some easily monitored indicators such as pH, dissolved oxygen, and conductivity, in a real AN-polluted river. The results showed that the GRU model achieved optimal prediction performance with a mean absolute error (MAE) of 0.349 and coefficient of determination (R2) of 0.792. Furthermore, it was found that data preprocessing by the VMD technique improved the prediction accuracy of the GRU model, resulting in an R2 value of 0.822. The prediction model effectively detected and warned against abnormal AN pollution (> 2 mg/L), with a Recall rate of 93.6% and Precision rate of 72.4%. This data-driven method enables reliable monitoring of AN concentration with high-frequency fluctuations and has potential applications for urban river pollution management.
Collapse
Affiliation(s)
- Yang Zhang
- PowerChina Zhongnan Engineering Corporation Limited, Changsha, 410014, China
| | - Liang Liu
- PowerChina Zhongnan Engineering Corporation Limited, Changsha, 410014, China
| | - Shenghong Zhang
- PowerChina Zhongnan Engineering Corporation Limited, Changsha, 410014, China
| | - Xiaolin Zou
- PowerChina Eco-Environmental Group Co.,Ltd, Shenzhen, 518101, China
| | - Jinlong Liu
- PowerChina Zhongnan Engineering Corporation Limited, Changsha, 410014, China
| | - Jian Guo
- PowerChina Zhongnan Engineering Corporation Limited, Changsha, 410014, China
| | - Ying Teng
- PowerChina Zhongnan Engineering Corporation Limited, Changsha, 410014, China
| | - Yu Zhang
- PowerChina Zhongnan Engineering Corporation Limited, Changsha, 410014, China.
| | - Hengpan Duan
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
- Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
2
|
Zhang B, Huang R, Liu Y, Wang L, Chen Y. Effects of atmospheric particulate pollution on lung function of athletes. ENVIRONMENTAL RESEARCH 2024; 252:118763. [PMID: 38527715 DOI: 10.1016/j.envres.2024.118763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
There is a knowledge gap on how ground-level particulate pollution affects labor productivity in emerging nations due to a lack of study, especially when it comes to outdoor work settings like couriers in the express delivery industry. Combining findings from two research projects, this paper examines the socioeconomic consequences of particulate matter and ground-level particulate pollution. Special panel dataset from China's express delivery companies are used, we study how particulate pollution affects courier productivity. The instrumental variable of our analysis was built by particulate pollution data from upwind towns. Moreover, a comparable rise in particulate levels during the 30 days caused a significant 23.7% decline in worker productivity. This draws attention to a neglected area of the economic effects of particulate pollution, especially in underdeveloped countries. Our results also highlight the wider health hazards connected to outdoor activities in high-pollution locations, drawing comparisons on outdoor exercisers and particulate matter concentrations. The critical need for coordinated policy attention addressing both ground-level Particulate and particle matters in developing nations is highlighted by the increased risk of lung function impairment among outdoor exercisers owing to excessive particulate matter concentrations. The interrelated risks that air pollution poses to public health and economic productivity are clarified by this Comprehensive viewpoint.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Physical Education and Teaching, Hebei Finance University, Baoding, Hebei, 071000, China
| | - Rongbao Huang
- Department of Physical Education and Teaching, Hebei Finance University, Baoding, Hebei, 071000, China
| | - Yiluan Liu
- Department of Physical Education and Teaching, Hebei Finance University, Baoding, Hebei, 071000, China
| | - Liwei Wang
- Baoding No.1 Central Hospital, Baoding, Hebei, 071000, China
| | - Yunpeng Chen
- Department of Physical Education and Teaching, Hebei Finance University, Baoding, Hebei, 071000, China.
| |
Collapse
|
3
|
Chen Y, Huang L, Xie X, Liu Z, Hu J. Improved prediction of hourly PM 2.5 concentrations with a long short-term memory and spatio-temporal causal convolutional network deep learning model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168672. [PMID: 38016563 DOI: 10.1016/j.scitotenv.2023.168672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Accurate prediction of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) is important for environmental management and human health protection. In recent years, many efforts have been devoted to develop air quality predictions using the machine learning and deep learning techniques. In this study, we propose a deep learning model for short-term PM2.5 predictions. The salient feature of the proposed model is that the convolution in the model architecture is causal, where the output of a time step is only convolved with components of the same or earlier time step from the previous layer. The model also weighs the spatial correlation between multiple monitoring stations. Through temporal and spatial correlation analysis, relevant information is screened from the monitoring stations with a strong relationship with the target station. Information from the target and related sites is then taken as input and fed into the model. A case study is conducted in Nanjing, China from January 1, 2020 to December 31, 2020. Using historical air quality and meteorological data from nine monitoring stations, the model predicts PM2.5 concentrations for the next hour. The experimental results show that the predicted PM2.5 concentrations are consistent with observation, with correlation coefficient (R2) and Root Mean Squared Error (RMSE) of our model are 0.92 and 6.75 μg/m3. Additionally, to better understand the factors affecting PM2.5 levels in different seasons, a machine learning algorithm based on Principal Component Analysis (PCA) is used to analyze the correlations between PM2.5 and its influencing factors. By identifying the main factors affecting PM2.5 and optimizing the input of the predictive model, the application of PCA in the model further improves the prediction accuracy, with decrease of up to 17.2 % in RMSE and 38.6 % in mean absolute error (MAE). The deep learning model established in this study provide a valuable tool for air quality management and public health protection.
Collapse
Affiliation(s)
- Yinsheng Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lin Huang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiaodong Xie
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhenxin Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
4
|
Jiang S, Yu ZG, Anh VV, Lee T, Zhou Y. An ensemble multi-scale framework for long-term forecasting of air quality. CHAOS (WOODBURY, N.Y.) 2024; 34:013110. [PMID: 38198680 DOI: 10.1063/5.0172382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
The significance of accurate long-term forecasting of air quality for a long-term policy decision for controlling air pollution and for evaluating its impacts on human health has attracted greater attention recently. This paper proposes an ensemble multi-scale framework to refine the previous version with ensemble empirical mode decomposition (EMD) and nonstationary oscillation resampling (NSOR) for long-term forecasting. Within the proposed ensemble multi-scale framework, we on one hand apply modified EMD to produce more regular and stable EMD components, allowing the long-range oscillation characteristics of the original time series to be better captured. On the other hand, we provide an ensemble mechanism to alleviate the error propagation problem in forecasts caused by iterative implementation of NSOR at all lead times and name it improved NSOR. Application of the proposed multi-scale framework to long-term forecasting of the daily PM2.5 at 14 monitoring stations in Hong Kong demonstrates that it can effectively capture the long-term variation in air pollution processes and significantly increase the forecasting performance. Specifically, the framework can, respectively, reduce the average root-mean-square error and the mean absolute error over all 14 stations by 8.4% and 9.2% for a lead time of 100 days, compared to previous studies. Additionally, better robustness can be obtained by the proposed ensemble framework for 180-day and 365-day long-term forecasting scenarios. It should be emphasized that the proposed ensemble multi-scale framework is a feasible framework, which is applicable for long-term time series forecasting in general.
Collapse
Affiliation(s)
- Shan Jiang
- School of Science, Hunan University of Technology and Business, Changsha, Hunan 410205, China
| | - Zu-Guo Yu
- National Center for Applied Mathematics in Hunan and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Vo V Anh
- School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
- Department of Mathematics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Taesam Lee
- Department of Civil Engineering, Gyeongsang National University, Jinju, GyeongNam 52828, South Korea
| | - Yu Zhou
- School of Urban & Regional Science and Institute for Global Innovation and Development, East China Normal University, Shanghai 200062, China
- Institute of Future Cities, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
5
|
Guo Q, He Z, Wang Z. Simulating daily PM 2.5 concentrations using wavelet analysis and artificial neural network with remote sensing and surface observation data. CHEMOSPHERE 2023; 340:139886. [PMID: 37611770 DOI: 10.1016/j.chemosphere.2023.139886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Accurate PM2.5 concentrations predicting is critical for public health and wellness as well as pollution control. However, traditional methods are difficult to accurately predict PM2.5. An adaptive model coupled with artificial neural network (ANN) and wavelet analysis (WANN) is utilized to predict daily PM2.5 concentrations with remote sensing and surface observation data. The four evaluation metrics, namely Pearson correlation coefficient (R), mean absolute percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE), are utilized to evaluate the performances of the artificial neural network (ANN) and WANN methods. From the predicting results, The WANN model has a higher R (R = 0.9990) during the testing period compared with R (R = 0.6844) based on the ANN model. Similarly, the WANN model has a lower MAPE (3.6988%), RMSE (1.0145 μg/m3), MAE (1.3864 μg/m3), compared with MAPE (80.0086%), RMSE (16.5838 μg/m3), MAE (12.2420 μg/m3) of the ANN. In addition, comparing the outcomes of the proposed WANN method with the ANN method, it was observed that the error during the training and verification period has decreased significantly. Furthermore, the statistical methods are used to analyze WANN and ANN, showing that WANN has higher training accuracy and better stability. Therefore, it is feasible to establish WANN to predict PM2.5 concentrations (1 day in advance) by using remote sensing and surface observation data.
Collapse
Affiliation(s)
- Qingchun Guo
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China; Key Laboratory of Atmospheric Chemistry, China Meteorological Administration, Beijing, 100081, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
| | - Zhenfang He
- School of Geography and Environment, Liaocheng University, Liaocheng, 252000, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Zhaosheng Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Chang-Silva R, Tariq S, Loy-Benitez J, Yoo C. Smart solutions for urban health risk assessment: A PM 2.5 monitoring system incorporating spatiotemporal long-short term graph convolutional network. CHEMOSPHERE 2023:139071. [PMID: 37271471 DOI: 10.1016/j.chemosphere.2023.139071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
Current spatial-temporal early warning systems aim to predict outdoor air quality in urban areas either at short or long temporal horizons. These systems implemented architectures without considering the geographical distribution of each air quality monitoring station, increasing the uncertainty of the forecasting framework. This study developed an integrated spatiotemporal forecasting architecture incorporating an extensive air quality PM2.5 monitoring network and simultaneously forecasts PM2.5 concentrations at all locations, allowing the monitoring of the health risk associated with exposure to these levels. First, this study uses a graph convolutional layer to incorporate the spatial relationship of the neighboring stations at their current state with real-time measurements. Then, it is coupled to a deep learning temporal model to form the long- and short-term time-series graph convolutional network (LSTGraphNet) model, anticipating high pollutant concentration events. This work tested the proposed model with a case study of an existing ambient air quality monitoring network in South Korea. LSTGraphNet model showed prediction performances of PM2.5 at multiple monitoring stations with a mean absolute error (MAE) of 1.82 μg/m3, 4.46 μg/m3, and 4.87 μg/m3 for forecasting horizons of one, three, and 6 h ahead, respectively. Compared to conventional sequential models, this architecture was superior among the state-of-the-art baselines, where the MAE decreased to 41%, respectively. The results of the study showed that the proposed architecture was superior to conventional sequential models and could be used as a tool for decision-making in smart cities by revealing hotspots of higher and lower PM2.5 concentrations in the long term.
Collapse
Affiliation(s)
- Roberto Chang-Silva
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Shahzeb Tariq
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jorge Loy-Benitez
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea; Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - ChangKyoo Yoo
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
7
|
Tao H, Jawad AH, Shather AH, Al-Khafaji Z, Rashid TA, Ali M, Al-Ansari N, Marhoon HA, Shahid S, Yaseen ZM. Machine learning algorithms for high-resolution prediction of spatiotemporal distribution of air pollution from meteorological and soil parameters. ENVIRONMENT INTERNATIONAL 2023; 175:107931. [PMID: 37119651 DOI: 10.1016/j.envint.2023.107931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/18/2023] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
This study uses machine learning (ML) models for a high-resolution prediction (0.1°×0.1°) of air fine particular matter (PM2.5) concentration, the most harmful to human health, from meteorological and soil data. Iraq was considered the study area to implement the method. Different lags and the changing patterns of four European Reanalysis (ERA5) meteorological variables, rainfall, mean temperature, wind speed and relative humidity, and one soil parameter, the soil moisture, were used to select the suitable set of predictors using a non-greedy algorithm known as simulated annealing (SA). The selected predictors were used to simulate the temporal and spatial variability of air PM2.5 concentration over Iraq during the early summer (May-July), the most polluted months, using three advanced ML models, extremely randomized trees (ERT), stochastic gradient descent backpropagation (SGD-BP) and long short-term memory (LSTM) integrated with Bayesian optimizer. The spatial distribution of the annual average PM2.5 revealed the population of the whole of Iraq is exposed to a pollution level above the standard limit. The changes in temperature and soil moisture and the mean wind speed and humidity of the month before the early summer can predict the temporal and spatial variability of PM2.5 over Iraq during May-July. Results revealed the higher performance of LSTM with normalized root-mean-square error and Kling-Gupta efficiency of 13.4% and 0.89, compared to 16.02% and 0.81 for SDG-BP and 17.9% and 0.74 for ERT. The LSTM could also reconstruct the observed spatial distribution of PM2.5 with MapCurve and Cramer's V values of 0.95 and 0.91, compared to 0.9 and 0.86 for SGD-BP and 0.83 and 0.76 for ERT. The study provided a methodology for forecasting spatial variability of PM2.5 concentration at high resolution during the peak pollution months from freely available data, which can be replicated in other regions for generating high-resolution PM2.5 forecasting maps.
Collapse
Affiliation(s)
- Hai Tao
- School of Computer and Information, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, China; State Key Laboratory of Public Big Data, Guizhou University, Guizhou, Guiyang 550025, China; Institute for Big Data Analytics and Artificial Intelligence (IBDAAI), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Ali H Jawad
- Faculty of Applied Sciences, UniversitiTeknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - A H Shather
- Dep of Computer Technology Engineering, Engineering Technical College, University of Alkitab, Iraq.
| | - Zainab Al-Khafaji
- Department of Building and Construction Technologies Engineering, AL-Mustaqbal University College, Hillah 51001, Iraq.
| | - Tarik A Rashid
- Computer Science and Engineering Department, University of Kurdistan Hewler, Erbil, KR, Iraq.
| | - Mumtaz Ali
- UniSQ College, University of Southern Queensland, QLD 4350, Australia.
| | - Nadhir Al-Ansari
- Dept. of Civil, Environmental and Natural Resources Engineering, Lulea Univ. of Technology, Lulea T3334, Sweden.
| | - Haydar Abdulameer Marhoon
- Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq; College of Computer Sciences and Information Technology, University of Kerbala, Karbala, Iraq.
| | - Shamsuddin Shahid
- Department of Hydraulics and Hydrology, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudia, Johor, Malaysia.
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|