1
|
Ajmal Z, Ul Haq M, Zaman S, Al-Muhanna MK, Kumar A, Fadhali MM, Hassine SBH, Qasim M, Alshammari KF, Ashraf GA, Qadeer A, Murtaza A, Al-Sulaimi S, Zeng H. Addressing the synchronized impact of a novel strontium titanium over copolymerized carbon nitride for proficient solar-driven hydrogen evolution. J Colloid Interface Sci 2024; 655:886-898. [PMID: 37979294 DOI: 10.1016/j.jcis.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 11/20/2023]
Abstract
Currently, novel technologies are highly prerequisite as an outstanding approach in the field of photocatalytic water splitting (PWS). Previous research has shown that copolymerization technology could improve the photocatalytic performance of pristine carbon nitride (CN) more efficiently. As this technology further allows the charge carrier recombination constraints, due to novel monomer-incorporated highly abundant surface-active sites of metals in polymeric carbon nitride-based heterojunction. However, in present study, a novel previously unexplored thiophenedicarboxaldehyde (TAL) conjugated, strontium-titanium (SrTiO3) induced and CN based heterojunction, i.e., SrTiO3/CN-TAL10.0, was prepared for solar-driven hydrogen evolution reaction (HER). This heterojunction effectively enables the proficient isolation of photoinduced charge carriers and enhanced the charge transport over the surface junction, by enhancing the optical absorption range and average lifetime of photogenerated charges. The incorporation of TAL within the structure of CN via copolymerization highly increases the photocatalytic activity, as well as maintaining its photostability performance. The SrTiO3 concentration and the proportion of TAL among CN can be precisely controlled to provide the optimal photocatalytic efficiency with a maximum HER of 285.9 µmol/h under visible light (λ = 420 nm). Based on these results, our optical analysis shows that coupling of SrTiO3 and TAL monomer in the structure of CN considerably reduce the band gap of superior sample from (3.42 to 2.66 eV), thereby, signifying the outstanding photocatalytic performance of SrTiO3/CN-TAL10.0. Thus, this study provide a new guideline in order to develop the multidimensional photocatalysts with proper functioning for sustainable energy conversion and production.
Collapse
Affiliation(s)
- Zeeshan Ajmal
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, College of Chemistry and Material Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xian, China.
| | - Mahmood Ul Haq
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, College of Chemistry and Material Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Shahid Zaman
- Institut d'Innovations en Écomatériaux, Écoproduits et Écoénergies, Université du Québec à Trois-Rivières (UQTR), 3351 boul. des forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - M K Al-Muhanna
- The Material Science Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Anuj Kumar
- Nanotechnology Research Laboratory, GLA, University, Mathura, Uttar Pradesh 281406, India
| | - Mohammed M Fadhali
- Department of Physics, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Siwar Ben Hadj Hassine
- Department of Computer Science, College of Science and Arts at Muhayel, King Khalid University, Saudi Arabia
| | - Muhammas Qasim
- School of Electronic Engineering, Jiujiang University, Jiujiang 332005, China
| | - K F Alshammari
- Department of Criminal Justice and Forensics, King Fahad Security College, Riyadh 11461, Saudi Arabia
| | - Ghulam Abbas Ashraf
- College of Environment, Hohai University, Nanjing 210098, China; New Uzbekistan University, Mustaqillik Ave. 54, Tashkent 100007, Uzbekistan.
| | - Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, China
| | - Adil Murtaza
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Key Laboratory of Advanced Functional Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xian Jiaotong University, 710049 Xian, Shaanxi, China.
| | | | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xian, China.
| |
Collapse
|
2
|
Naciri Y, Ahdour A, Benhsina E, Hamza MA, Bouziani A, Hsini A, Bakiz B, Navío JA, Ghazzal MN. Ba 3(PO 4) 2 Photocatalyst for Efficient Photocatalytic Application. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300257. [PMID: 38223895 PMCID: PMC10784198 DOI: 10.1002/gch2.202300257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/29/2023] [Indexed: 01/16/2024]
Abstract
Barium phosphate (Ba3(PO4)2) is a class of material that has attracted significant attention thanks to its chemical stability and versatility. However, the use of Ba3(PO4)2 as a photocatalyst is scarcely reported, and its use as a photocatalyst has yet to be reported. Herein, Ba3(PO4)2 nanoflakes synthesis is optimized using sol-gel and hydrothermal methods. The as-prepared Ba3(PO4)2 powders are investigated using physicochemical characterizations, including XRD, SEM, EDX, FTIR, DRS, J-t, LSV, Mott-Schottky, and EIS. In addition, DFT calculations are performed to investigate the band structure. The oxidation capability of the photocatalysts is investigated depending on the synthesis method using rhodamine B (RhB) as a pollutant model. Both Ba3(PO4)2 samples prepared by the sol-gel and hydrothermal methods display high RhB photodegradation of 79% and 68%, respectively. The Ba3(PO4)2 obtained using the sol-gel process exhibits much higher stability under light excitation after four regeneration cycles. The photocatalytic oxidation mechanism is proposed based on the active species trapping experiments where O2 •‒ is the most reactive species. The finding shows the promising potential of Ba3(PO4)2 photocatalysts and opens the door for further investigation and application in various photocatalytic applications.
Collapse
Affiliation(s)
- Yassine Naciri
- Institut de Chimie PhysiqueUMR 8000 CNRSUniversité Paris‐SaclayOrsay91405France
| | - Ayoub Ahdour
- Laboratory of Materials and EnvironmentFaculty of SciencesIbn Zohr UniversityB.P 8106AgadirMorocco
| | - Elhassan Benhsina
- Materials Science CenterFaculty of SciencesMohammed V University in RabatRabatB.P:8007Morocco
| | - Mahmoud Adel Hamza
- Chemistry DepartmentFaculty of ScienceAin Shams UniversityAbbasiaCairo11566Egypt
- Department of ChemistrySchool of PhysicsChemistry and Earth SciencesThe University of AdelaideAdelaideSA5005Australia
| | - Asmae Bouziani
- Chemical Engineering DepartmentMiddle East Technical UniversityAnkara06800Turkey
| | - Abdelghani Hsini
- National Higher School of Chemistry (NHSC)University Ibn TofailBP. 133Kenitra14000Morocco
- Laboratory of Advanced Materials and Process Engineering (LAMPE)Faculty of ScienceIbn Tofail UniversityBP 133Kenitra14000Morocco
| | - Bahcine Bakiz
- Laboratory of Materials and EnvironmentFaculty of SciencesIbn Zohr UniversityB.P 8106AgadirMorocco
- Materials Science CenterFaculty of SciencesMohammed V University in RabatRabatB.P:8007Morocco
| | - Jose Antonio Navío
- Instituto de Ciencia de Materiales de SevillaCentro Mixto Universidad de Sevilla‐CSICAmérico Vespucio 49Sevilla41092Spain
| | | |
Collapse
|
3
|
Liu Q, Li H, Zhang Y, Chen W, Yu S, Chen Y. Porphyrin/phthalocyanine-based porous organic polymers for pollutant removal and detection: Synthesis, mechanisms, and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117406. [PMID: 37839529 DOI: 10.1016/j.envres.2023.117406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
The growing global concern about environmental threats due to environmental pollution requires the development of environmentally friendly and efficient removal/detection materials and methods. Porphyrin/phthalocyanine (Por/Pc) based porous organic polymers (POPs) as a newly emerging porous material are prepared through polymerizing building blocks with different structures. Benefiting from the high porosity, adjustable pore structure, and enzyme-like activities, the Por/Pc-POPs can be the ideal platform to study the removal and detection of pollutants. However, a systematic summary of their application in environmental treatment is still lacking to date. In this review, the development of various Por/Pc-POPs for pollutant removal and detection applications over the past decade was systematically addressed for the first time to offer valuable guidance on environmental remediation through the utilization of Por/Pc-POPs. This review is divided into two sections (pollutants removal and detection) focusing on Por/Pc-POPs for organic, inorganic, and gaseous pollutants adsorption, photodegradation, and chemosensing, respectively. The related removal and sensing mechanisms are also discussed, and the methods to improve removal and detection efficiency and selectivity are also summarized. For the future practical application of Por/Pc-POPs, this review provides the emerging research directions and their application possibility and challenges in the removal and detection of pollutants.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hao Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuming Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Wenmiao Chen
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
4
|
Cai J, Peng Y, Jiang Y, Li L, Wang H, Li K. Application of Fe-MOFs in Photodegradation and Removal of Air and Water Pollutants: A Review. Molecules 2023; 28:7121. [PMID: 37894600 PMCID: PMC10609057 DOI: 10.3390/molecules28207121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Photocatalytic technology has received increasing attention in recent years. A pivotal facet of photocatalytic technology lies in the development of photocatalysts. Porous metal-organic framework (MOF) materials, distinguished by their unique properties and structural characteristics, have emerged as a focal point of research in the field, finding widespread application in the photo-treatment and conversion of various substances. Fe-based MOFs have attained particular prominence. This review explores recent advances in the photocatalytic degradation of aqueous and gaseous substances. Furthermore, it delves into the interaction between the active sites of Fe-MOFs and pollutants, offering deeper insights into their mechanism of action. Fe-MOFs, as photocatalysts, predominantly facilitate pollutant removal through redox processes, interaction with acid sites, the formation of complexes with composite metal elements, binding to unsaturated metal ligands (CUSs), and hydrogen bonding to modulate their respiratory behavior. This review also highlights the focal points of future research, elucidating the challenges and opportunities that lie ahead in harnessing the characteristics and advantages of Fe-MOF composite catalysts. In essence, this review provides a comprehensive summary of research progress on Fe-MOF-based catalysts, aiming to serve as a guiding reference for other catalytic processes.
Collapse
Affiliation(s)
- Jun Cai
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
| | - Yang Peng
- Kunming Electric Power Design Institute Limited Liability Company, Kunming 650034, China
| | - Yanxin Jiang
- Yunnan Hubai Environmental Protection Technology Co., Ltd., Kunming 650034, China
| | - Li Li
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Hua Wang
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Kongzhai Li
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
| |
Collapse
|
5
|
Tulebekov Y, Orazov Z, Satybaldiyev B, Snow DD, Schneider R, Uralbekov B. Reaction Steps in Heterogeneous Photocatalytic Oxidation of Toluene in Gas Phase-A Review. Molecules 2023; 28:6451. [PMID: 37764227 PMCID: PMC10536914 DOI: 10.3390/molecules28186451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
A review of the current literature shows there is no clear consensus regarding the reaction mechanisms of air-borne aromatic compounds such as toluene by photocatalytic oxidation. Potential oxidation reactions over TiO2 or TiO2-based catalysts under ultraviolet and visible (UV/VIS) illumination are most commonly considered for removal of these pollutants. Along the pathways from a model pollutant, toluene, to final mineralization products (CO2 and H2O), the formation of several intermediates via specific reactions include parallel oxidation reactions and formation of less-reactive intermediates on the TiO2 surface. The latter may occupy active adsorption sites and causes drastic catalyst deactivation in some cases. Major hazardous gas-phase intermediates are benzene and formaldehyde, classified by the International Agency for Research on Cancer (IARC) as Group 1 carcinogenic compounds. Adsorbed intermediates leading to catalyst deactivation are benzaldehyde, benzoic acid, and cresols. The three most typical pathways of toluene photocatalytic oxidation are reviewed: methyl group oxidation, aromatic ring oxidation, and aromatic ring opening.
Collapse
Affiliation(s)
- Yerzhigit Tulebekov
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty 050012, Kazakhstan
| | - Zhandos Orazov
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty 050012, Kazakhstan
| | - Bagdat Satybaldiyev
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty 050012, Kazakhstan
- LLP «EcoRadSM», Almaty 050040, Kazakhstan
| | - Daniel D Snow
- Water Sciences Laboratory, Nebraska Water Center, Part of the Daugherty Water for Food Global Institute, University of Nebraska, Lincoln, NE 68583, USA
| | | | - Bolat Uralbekov
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty 050012, Kazakhstan
- LLP «EcoRadSM», Almaty 050040, Kazakhstan
| |
Collapse
|
6
|
Hayat A, Sohail M, Moussa SB, Al-Muhanna MK, Iqbal W, Ajmal Z, Raza S, Al-Hadeethi Y, Orooji Y. State, synthesis, perspective applications, and challenges of Graphdiyne and its analogues: A review of recent research. Adv Colloid Interface Sci 2023; 319:102969. [PMID: 37598456 DOI: 10.1016/j.cis.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Carbon materials technology provides the possibility of synthesizing low-cost, outstanding performance replacements to noble-metal catalysts for long-term use. Graphdiyne (GDY) is a carbon allotrope with an extremely thin atomic thickness. It consists of carbon elements, that are hybridized with both sp. and sp2, resulting in a multilayered two-dimensional (2D) configuration. Several functional models suggest, that GDY contains spontaneously existing band structure with Dirac poles. This is due to the non-uniform interaction among carbon atoms, which results from various fusions and overlapping of the 2pz subshell. Unlike other carbon allotropes, GDY has Dirac cone arrangements, that in turn give it inimitable physiochemical characteristics. These properties include an adjustable intrinsic energy gap, high speeds charging transport modulation efficiency, and exceptional conductance. Many scientists are interested in such novel, linear, stacked materials, including GDY. As a result, organized synthesis of GDY has been pursued, making it one of the first synthesized GDY materials. There are several methods to manipulate the band structure of GDY, including applying stresses, introducing boron/nitrogen loading, utilizing nanowires, and hydrogenations. The flexibility of GDY can be effectively demonstrated through the formation of nano walls, nanostructures, nanotube patterns, nanorods, or structured striped clusters. GDY, being a carbon material, has a wide range of applications owing to its remarkable structural and electrical characteristics. According to subsequent research, the GDY can be utilized in numerous energy generation processes, such as electrochemical water splitting (ECWS), photoelectrochemical water splitting (PEC WS), nitrogen reduction reaction (NRR), overall water splitting (OWS), oxygen reduction reaction (ORR), energy storage materials, lithium-Ion batteries (LiBs) and solar cell applications. These studies suggested that the use of GDY holds significant potential for the development and implementation of efficient, multimodal, and intelligent catalysts with realistic applications. However, the limitation of GDY and GDY-based composites for forthcoming studies are similarly acknowledged. The objective of these studies is to deliver a comprehensive knowledge of GDY and inspire further advancement and utilization of these unique carbon materials.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Sana Ben Moussa
- Faculty of Science and Arts, Mohail Asser, King Khalid University, Saudi Arabia
| | - Muhanna K Al-Muhanna
- The Material Science Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Zeeshan Ajmal
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Saleem Raza
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Bhaskaran A, Sharma D, Roy S, Singh SA. Technological solutions for NO x, SO x, and VOC abatement: recent breakthroughs and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91501-91533. [PMID: 37495811 DOI: 10.1007/s11356-023-28840-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
NOx, SOx, and carbonaceous volatile organic compounds (VOCs) are extremely harmful to the environment, and their concentrations must be within the limits prescribed by the region-specific pollution control boards. Thus, NOx, SOx, and VOC abatement is essential to safeguard the environment. Considering the importance of NOx, SOx, and VOC abatement, the discussion on selective catalytic reduction, oxidation, redox methods, and adsorption using noble metal and non-noble metal-based catalytic approaches were elaborated. This article covers different thermal treatment techniques, category of materials as catalysts, and its structure-property insights along with the advanced oxidation processes and adsorption. The defect engineered catalysts with lattice oxygen vacancies, bi- and tri-metallic noble metal catalysts and non-noble metal catalysts, modified metal organic frameworks, mixed-metal oxide supports, and their mechanisms have been thoroughly reviewed. The main hurdles and potential achievements in developing novel simultaneous NOx, SOx, and VOC removal technologies are critically discussed to envisage the future directions. This review highlights the removal of NOx, SOx, and VOC through material selection, properties, and mechanisms to further improve the existing abatement methods in an efficient way.
Collapse
Affiliation(s)
- Aathira Bhaskaran
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Deepika Sharma
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Satyapaul A Singh
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, 500078, India.
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
8
|
Razavi Z, Mirghaffari N, Soleimani M. Reduction of CO 2 emission through a photocatalytic process using powder and coated zeolite-supported TiO 2 under concentrated sunlight irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32524-32538. [PMID: 36469265 DOI: 10.1007/s11356-022-24498-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The efficiency of a novel synthetic zeolite (Ze) prepared from stone cutting sludge and a natural zeolite (clinoptilolite, Cp) as the support of TiO2 photocatalyst was examined for the CO2 removal under solar irradiation using a designed parabolic trough collector (PTC). The used samples were characterized using XRF, BET, SEM/EDS, and XPS analyses. The enhanced sunlight irradiation obtained by PTC increased the performance of CO2 photocatalytic removal. The maximum CO2 adsorption by TiO2-Ze and TiO2-Cp composites was 21.1% and 28.4% which increased to 61.8% and 78.9% under sunlight irradiation, respectively. The efficiency of zeolite-TiO2 composites for CO2 removal was approximately two times higher than zeolites and TiO2 alone. The performance of TiO2-Ze-coated composite with lower use of photocatalyst for CO2 adsorption and photocatalytic removal was better than that of powder one. Regeneration of TiO2-Ze using NaOH solution improved its removal efficiency. The adsorption behavior of CO2 on TiO2-Ze composite was well described by the Langmuir isotherm and the pseudo-first-order kinetic model. This work promises CO2 reduction using natural and synthetic zeolite as an efficient photocatalyst support under solar irradiation.
Collapse
Affiliation(s)
- Zahra Razavi
- Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| | | | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
9
|
Water-Based Photocatalytic Sol–Gel TiO2 Coatings: Synthesis and Durability. Catalysts 2023. [DOI: 10.3390/catal13030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The environmental impact of industrial technologies and related remediation methods are major research trend lines. Unfortunately, in the development of materials for wastewater treatment or air purification, hazardous reactants are often employed, reducing the overall beneficial contribution of such technology on the environment. We here synthesize stable titanium dioxide (TiO2) sols using a green route, with titanium tetraisopropoxide (TTIP) as precursor, water as solvent and acetic acid acting as catalyst, chelating agent and peptizing agent. The sol was deposited on glass by dip-coating and then analyzed using XRD, SEM and spectrophotometry. Wastewater purification ability was evaluated in the photocatalytic degradation of two organic dyes (Rhodamine B and Methylene Blue). Results on RhB showed > 85% degradation in 6 h maintained along a series of 7 tests, confirming good efficiency and reusability, and 100% in 3 h on MB; efficiency mostly depended on calcination temperature and layer thickness. High photodegradation efficiency was found in nonannealed samples, suggesting TiO2 nanoparticles crystallization during sol–gel production. Yet, such samples showed a gradual decrease in photoactivity in repeated tests, probably due to a partial release of TiO2 particles in solution, while on calcined samples a good adhesion was obtained, leading to a more durable photoactive layer.
Collapse
|
10
|
Recent Developments in Photocatalytic Nanotechnology for Purifying Air Polluted with Volatile Organic Compounds: Effect of Operating Parameters and Catalyst Deactivation. Catalysts 2023. [DOI: 10.3390/catal13020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Photocatalytic oxidation (PCO) is a successful method for indoor air purification, especially for removing low-concentration pollutants. Volatile organic compounds (VOCs) form a class of organic pollutants that are released into the atmosphere by consumer goods or via human activities. Once they enter the atmosphere, some might combine with other gases to create new air pollutants, which can have a detrimental effect on the health of living beings. This review focuses on current developments in the degradation of indoor pollutants, with an emphasis on two aspects of PCO: (i) influence of environmental (external) conditions; and (ii) catalyst deactivation and possible solutions. TiO2 is widely used as a photocatalyst in PCO because of its unique properties. Here, the potential effects of the operating parameters, such as the nature of the reactant, catalyst support, light intensity, and relative humidity, are extensively investigated. Then the developments and limitations of the PCO technique are highlighted, especially photocatalyst deactivation. Furthermore, the nature and deactivation mechanisms of photocatalysts are discussed, with possible solutions for reducing catalyst deactivation. Finally, the challenges and future directions of PCO technology for the elimination of indoor pollutants are compared and summarized.
Collapse
|
11
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
12
|
Embedding Aromatic Conjugated Monomer within Carbon Nitride for Efficient Photocatalytic Reduction Reactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|