1
|
Panghal V, Singh A, Hooda V, Arora D, Bhateria R, Kumar S. Recent progress, challenges, and future prospects in constructed wetlands employing biochar as a substrate: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35846-7. [PMID: 39739227 DOI: 10.1007/s11356-024-35846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Constructed wetlands (CWs) are a cost-effective, efficient, and long-term wastewater treatment solution in various countries. The efficacy and performance of constructed wetlands are greatly influenced by the substrate. Recently, biochar as a substrate, along with sand and gravel in constructed wetlands, has gained importance due to its various physical, chemical, and biological properties. This review presents a detailed study of biochar as a substrate in CWs and the mechanism involved in efficiency enhancement in pollutant removal. Different methods for producing biochar using various types of biomasses are also addressed. The effect of biochar in removing pollutants like biological oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, heavy metals, and non-conventional pollutants (microcystin, phenanthrene, antibiotics, etc.) are also discussed. Furthermore, post-harvest utilization of constructed wetland macrophytic biomass via bioenergy production, biochar formation, and biosorbent formation is explained. Various challenges and future prospects in biochar-amended constructed wetlands are also discussed. Biochar proved to be an effective substrate in the removal of pollutants and proved to be a promising technique for wastewater treatment, especially for developing countries where the cost of treatment is a constraint. Biochar is an effective substrate; further modification in biochar with the right plant combination for different wastewater needs to be explored in the future. Future researchers in the field of constructed wetlands will benefit from this review during the utilization of biochar in constructed wetlands and optimization of biochar characteristics, viz., quantity, size, preparation method, and other biochar modifications.
Collapse
Affiliation(s)
- Vishal Panghal
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Asha Singh
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vishwajit Hooda
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Dinesh Arora
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rachna Bhateria
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sunil Kumar
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
2
|
Karki BK. Amended biochar in constructed wetlands: Roles, challenges, and future directions removing pharmaceuticals and personal care products. Heliyon 2024; 10:e39848. [PMID: 39524858 PMCID: PMC11550652 DOI: 10.1016/j.heliyon.2024.e39848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pharmaceuticals and personal care products (PPCPs) in wastewater pose significant threats to both human health and aquatic ecosystems. Wastewater discharge from various sources is the primary cause of these contaminants, and proper treatment is essential for protecting the environment. Traditional treatment technologies are often too expensive and ineffective in removing PPCPs. Constructed wetlands (CWs) offer a sustainable, cost-efficient alternative for wastewater treatment, though their capability to eliminate PPCPs can vary based on multiple aspects. Recent studies highlight biochar-a carbon-rich material resultant from biomass pyrolysis-as a promising amendment to improve CW performance. However, there is a deficiency of proper literature reviews on using biochar in CWs specifically for PPCP removal. This review focuses on biochar's role in CWs and its effectiveness in removing PPCPs and enhancing microbial activity and nutrient cycling. A bibliometric analysis using Vosviewer software was used to assess the current research trends in the biochar-amended CWs to attenuate PPCPs. While biochar shows potential in eliminating PPCPs, challenges, such as optimizing its application and addressing long-term operational concerns for treating emerging pollutants like PPCPs. Future research should enhance biochar production and low-cost techniques for diverse groups of PPCPs and perform field trials to validate laboratory results under actual conditions exploring microbial-biochar and plant-biochar interactions. Addressing these challenges is crucial to advancing biochar-amended CWs and enhancing wastewater treatment on a global scale.
Collapse
Affiliation(s)
- Bhesh Kumar Karki
- Tribhuvan University, Institute of Engineering, Thapathali Campus, Department of Civil Engineering Kathmandu, 44600, Nepal
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
3
|
Lin Z, Shi Q, He Q. A Long-Term Assessment of Nitrogen Removal Performance and Microecosystem Evolution in Bioretention Columns Modified with Sponge Iron. TOXICS 2024; 12:727. [PMID: 39453147 PMCID: PMC11511418 DOI: 10.3390/toxics12100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
The nitrogen removal performance of bioretention urgently needs to be improved, and sponge iron has great potential to address this challenge. This study reported the results of a long-term investigation on bioretention columns improved by sponge iron, examining the durability of sponge iron from nitrogen removal performance, sponge iron properties, and the evolution of biological elements. The results showed that after 9 months of continuous operation, the removal rates of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), and total nitrogen (TN) in the bioretention columns with an appropriate proportion of sponge iron could reach 80% (some even over 90%). However, the long-term stress of sponge iron exposure, combined with the cumulative effect of pollutants, might lead to the excessive accumulation of reactive oxygen species (ROS) in plants, thereby posing risks of diminished chlorophyll content and enzyme activity. Simultaneously, the extended exposure could also have detrimental effects on microbial diversity and the abundance of dominant bacteria such as Proteobacteria and Sphingorhabdus. Therefore, it is necessary to select plant species and functional genes that demonstrate high adaptability to iron-induced stress.
Collapse
Affiliation(s)
- Zizeng Lin
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Qinghuan Shi
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Qiumei He
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China;
| |
Collapse
|
4
|
Kushwaha A, Goswami L, Kim BS, Lee SS, Pandey SK, Kim KH. Constructed wetlands for the removal of organic micropollutants from wastewater: Current status, progress, and challenges. CHEMOSPHERE 2024; 360:142364. [PMID: 38768790 DOI: 10.1016/j.chemosphere.2024.142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
In this work, the practical utility of constructed wetlands (CWs) is described as a promising treatment option for micropollutants (MPs) in wastewater with the aid of their eco-friendly, low-energy, economically feasible, and ecologically sustainable nature. This paper offers a comprehensive review on CW technology with respect to the key strategies for MP removal such as phytoremediation, substrate adsorption, and microbial degradation. It explores the important factors controlling the performance of CWs (e.g., in terms of configurations, substrates, plant-microbe interactions, temperature, pH, oxygen levels, hydraulic loading rate, and retention time) along with the discussions on the pivotal role of microbial populations in CWs and plant-microbe cooperative remediation dynamics, particularly in relation to diverse organic MP patterns in CWs. As such, this review aims to provide valuable insights into the key strategies for optimizing MP treatment and for enhancing the efficacy of CW systems. In addition, the process-based models of constructed wetlands along with the numerical simulations based on the artificial neural network (ANN) method are also described in association with the data exploratory techniques. This work is thus expected to help open up new possibilities for the application of plant-microbe cooperative remediation approaches against diverse patterns of organic MPs present in CWs.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Sudhir Kumar Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya (a central University) Bilaspur, Chhattisgarh, 495009, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
5
|
Andrade HND, Oliveira JFD, Siniscalchi LAB, Costa JDD, Fia R. Global insight into the occurrence, treatment technologies and ecological risk of emerging contaminants in sanitary sewers: Effects of the SARS-CoV-2 coronavirus pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171075. [PMID: 38402973 DOI: 10.1016/j.scitotenv.2024.171075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The SARS-CoV-2 pandemic caused changes in the consumption of prescribed/non-prescribed drugs and the population's habits, influencing the detection and concentration of emerging contaminants (ECs) in sanitary sewage and harming environmental and health risks. Therefore, the present work sought to discuss current literature data on the effects of the "COVID-19 pandemic factor" on the quality of raw sewage produced over a five-year period (2018-2019: pre-pandemic; 2020-2022: during the pandemic) and biological, physical, chemical and hybrid treatment technologies, influencing factors in the removal of ECs and potential ecological risks (RQs). Seven hundred thirty-one publications correlating sewage and COVID-19 were identified: 184 pre-pandemic and 547 during the pandemic. Eight classes and 37 ECs were detected in sewage between 2018 and 2022, with the "COVID-19 pandemic factor" promoting an increase in estrogens (+31,775 %), antibiotics (+19,544 %), antiepileptics and antipsychotics (+722 %), pesticides (+200 %), analgesics, anti-inflammatories and anticoagulants (+173 %), and stimulant medications (+157 %) in sanitary sewage. Among the treatment systems, aerated reactors integrated into biomembranes removed >90 % of cephalexin, clarithromycin, ibuprofen, estrone, and 17β-estradiol. The absorption, adsorption, and biodegradation mechanisms of planted wetland systems contributed to better cost-benefit in reducing the polluting load of sewage ECs in the COVID-19 pandemic, individually or integrated into the WWTP. The COVID-19 pandemic factor increased the potential ecological risks (RQs) for aquatic organisms by 40 %, with emphasis on clarithromycin and sulfamethoxazole, which changed from negligible risk and low risk to (very) high risk and caffeine with RQ > 2500. Therefore, it is possible to suggest that the COVID-19 pandemic intensified physiological, metabolic, and physical changes to different organisms in aquatic biota by ECs during 2020 and 2022.
Collapse
Affiliation(s)
- Heloisa Nascimento de Andrade
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil
| | - Jacineumo Falcão de Oliveira
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil.
| | | | - Joseane Dunga da Costa
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil
| | - Ronaldo Fia
- Department of Environmental Engineering, Federal University of Lavras, UFLA, Minas Gerais 37200-000, Brazil
| |
Collapse
|
6
|
Feng Y, Nuerla A, Tian M, Mamat A, Si A, Chang J, Abudureheman M, He C, Zhu J, Tong Z, Liu Z. Removal of chloramphenicol and resistance gene changes in electric-integrated vertical flow constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118143. [PMID: 37196621 DOI: 10.1016/j.jenvman.2023.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
The performance of an electric-integrated vertical flow constructed wetland (E-VFCW) for chloramphenicol (CAP) removal, changes in microbial community structure, and the fate of antibiotic resistance genes (ARGs) were evaluated. CAP removal in the E-VFCW system was 92.73% ± 0.78% (planted) and 90.80% ± 0.61% (unplanted), both were higher than the control system which was 68.17% ± 1.27%. The contribution of anaerobic cathodic chambers in CAP removal was higher than the aerobic anodic chambers. Plant physiochemical indicators in the reactor revealed electrical stimulation increased oxidase activity. Electrical stimulation enhanced the enrichment of ARGs in the electrode layer of the E-VFCW system (except floR). Plant ARGs and intI1 levels were higher in the E-VFCW than in the control system, suggesting electrical stimulation induces plants to absorb ARGs, reducing ARGs in the wetland. The distribution of intI1 and sul1 genes in plants suggests that horizontal transfer may be the main mechanism dispersing ARGs in plants. High throughput sequencing analysis revealed electrical stimulation selectively enriched CAP degrading functional bacteria (Geobacter and Trichlorobacter). Quantitative correlation analysis between bacterial communities and ARGs confirmed the abundance of ARGs relates to the distribution of potential hosts and mobile genetic elements (intI1). E-VFCW is effective in treating antibiotic wastewater, however ARGs potentially accumulate.
Collapse
Affiliation(s)
- Yuran Feng
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Ailijiang Nuerla
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China.
| | - Menghan Tian
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Anwar Mamat
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China
| | - Ang Si
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Jiali Chang
- Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Sichuan, 614000, PR China
| | - Mukadasi Abudureheman
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Jinjin Zhu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Zhaohong Tong
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| | - Zhaojiang Liu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China
| |
Collapse
|
7
|
Salah M, Zheng Y, Wang Q, Li C, Li Y, Li F. Insight into pharmaceutical and personal care products removal using constructed wetlands: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163721. [PMID: 37116812 DOI: 10.1016/j.scitotenv.2023.163721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) were regarded as emerging environmental pollutants due to their ubiquitous appearance and high environmental risks. The wastewater treatment plants (WWTPs) became the hub of PPCPs receiving major sources of PPCPs used by humans. Increasing concern has been focused on promoting cost-effective ways to eliminate PPCPs within WWTPs for blocking their route into the environment through effluent discharging. Among all advanced technologies, constructed wetlands (CWs) with a combination of plants, substrates, and microbes attracted attention due to their cost-effectiveness and easier maintenance during long-term operation. This study offers baseline data for risk control and future treatment by discussing the extent and dispersion of PPCPs in surface waters over the past ten years and identifying the mechanisms of PPCPs removal in CWs based on the up-to-present research, with a special focus on the contribution of sediments, vegetation, and the interactions of microorganisms. The significant role of wetland plants in the removal of PPCPs was detailed discussed in identifying the contribution of direct uptake, adsorption, phytovolatilization, and biodegradation. Meanwhile, the correlation between the physical-chemical characteristics of PPCPs, the configuration operation of wetlands, as well as the environmental conditions with PPCP removal were also further estimated. Finally, the critical issues and knowledge gaps before the real application were addressed followed by promoted future works, which are expected to provide a comprehensive foundation for study on PPCPs elimination utilizing CWs and drive to achieve large-scale applications to treat PPCPs-contaminated surface waters.
Collapse
Affiliation(s)
- Mohomed Salah
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yu Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qian Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Chenguang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yuanyuan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
8
|
Liu A, Zhao Y, Cai Y, Kang P, Huang Y, Li M, Yang A. Towards Effective, Sustainable Solution for Hospital Wastewater Treatment to Cope with the Post-Pandemic Era. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2854. [PMID: 36833551 PMCID: PMC9957062 DOI: 10.3390/ijerph20042854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread across the globe since the end of 2019, posing significant challenges for global medical facilities and human health. Treatment of hospital wastewater is vitally important under this special circumstance. However, there is a shortage of studies on the sustainable wastewater treatment processes utilized by hospitals. Based on a review of the research trends regarding hospital wastewater treatment in the past three years of the COVID-19 outbreak, this review overviews the existing hospital wastewater treatment processes. It is clear that activated sludge processes (ASPs) and the use of membrane bioreactors (MBRs) are the major and effective treatment techniques applied to hospital wastewater. Advanced technology (such as Fenton oxidation, electrocoagulation, etc.) has also achieved good results, but the use of such technology remains small scale for the moment and poses some side effects, including increased cost. More interestingly, this review reveals the increased use of constructed wetlands (CWs) as an eco-solution for hospital wastewater treatment and then focuses in slightly more detail on examining the roles and mechanisms of CWs' components with respect to purifying hospital wastewater and compares their removal efficiency with other treatment processes. It is believed that a multi-stage CW system with various intensifications or CWs incorporated with other treatment processes constitute an effective, sustainable solution for hospital wastewater treatment in order to cope with the post-pandemic era.
Collapse
Affiliation(s)
- Ang Liu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yulong Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Min Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Anran Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|