1
|
Drahota P, Ettler V, Košek F. Arsenic bioaccessibility in environmentally important arsenic minerals. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136838. [PMID: 39681065 DOI: 10.1016/j.jhazmat.2024.136838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/20/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024]
Abstract
The potential risk to humans from incidental ingestion of As-contaminated soil and mine waste is influenced by the mineralogical composition of the As phases present. Using the Solubility Bioaccessibility Research Consortium in vitro assay, simulating gastric conditions, we determined the oral bioaccessibility of As in 16 environmentally important As mineral(oid)s commonly found in mine waste and contaminated soils. Our results revealed a wide range of bioaccessibility values closely related to the solubility of the mineral(oid)s. Bioaccessibility values ranged from 0.15 % in minerals with great environmental stability such as scorodite and pharmacosiderite, to complete (100 %) release from minerals such as adamite, erythrite and pharmacolite. Intermediate bioaccessibility levels were observed in minerals such as arsenolite and yukonite, ranging from 6 % to 67 %. In mixtures with soil, the bioaccessibility of As in mineral(oid)s with low solubility was significantly reduced, with bioaccessibility values up to 8.7 times lower due to the effective adsorption of As by the soil. We conclude that the bioaccessibility of As in natural soil and mine waste is intricately influenced by both the mineralogical composition of As phases and the As retention capacity of natural materials under acidic conditions of gastric fluids.
Collapse
Affiliation(s)
- Petr Drahota
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, Prague 128 00, Czech Republic.
| | - Vojtěch Ettler
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, Prague 128 00, Czech Republic
| | - Filip Košek
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, Prague 128 00, Czech Republic
| |
Collapse
|
2
|
Zhang S, Li X, Geng T, Zhang Y, Zhang W, Zheng X, Sheng H, Jiang Y, Jin P, Kui X, Liu H, Ma G, Yun J, Yan X, Zhang X, Galindo-Prieto B, Kelly FJ, Mudway I. Using machine learning to predict soil lead relative bioavailability. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136515. [PMID: 39591930 DOI: 10.1016/j.jhazmat.2024.136515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Although the relative bioavailability (RBA) can be applied to assess the effects of Pb on human health, there is no definition and no specific data of Pb-RBA to different soil sources and endpoints in vivo. In this study, we estimated the Pb-RBA from different soil sources and endpoints based on machine learning. The Pb-BAc and Pb-RBA in soils were found to be mostly in the range of 20-80 %, which is different from the USEPA Pb-RBA of 60 % in soils. The mean Pb-RBA for different biological endpoints in vivo predicted using the RF model were 49.94 ± 18.65 % for blood; 60.15 ± 26.62 %, kidney; 60.90 ± 21.51 %, liver; 50.70 ± 17.56 %, femur; and 62.89 ± 16.64 % as a combined measure. Pb-RBA of shooting range soils was 88.21 ± 16.92 % (mean), spiked/aged soils 77.11 ± 14.05 % and certified reference materials 73.70 ± 20.31 %; agricultural soil 68.28 ± 18.93 %, urban soil 64.36 ± 21.82 %, mining/smelting soils 53.99 ± 17.66 %, and industrial soils 47.71 ± 20.35 %. This study is first to define the Pb-RBA according to various soil sources and endpoints in vivo with the objective of providing more accurate Pb-RBA data for soil lead risk assessment.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Tunyang Geng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Weixi Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xueming Zheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - He Sheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yueheng Jiang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Pengyuan Jin
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xuelian Kui
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Huimin Liu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Ge Ma
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Jiang Yun
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiangyang Yan
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Beatriz Galindo-Prieto
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Frank J Kelly
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Ian Mudway
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| |
Collapse
|
3
|
Cui J, Li H, Shi Y, Zhang F, Hong Z, Fang D, Jiang J, Wang Y, Xu R. Influence of soil pH and organic carbon content on the bioaccessibility of lead and copper in four spiked soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124686. [PMID: 39111526 DOI: 10.1016/j.envpol.2024.124686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Exploration of the association between heavy metal bioaccessibility (BAc) and soil properties is essential for rationalization of risk assessment and remediation of contaminated soil; however, the high complexity of soil systems often yield conflicting outcomes. To avoid erroneous conclusions, individual comparisons of soil properties is essential. Herein, we determined the changes in the BAc of Pb and Cu with the variation in soil pH and SOC content using Unified Bioaccessibility Research Group of Europe method, and validated these findings with in vivo mouse bioassays. Results indicated that the BAc of Pb and Cu in gastric and intestinal phases decreased by 1.76%-3.92% and 0.90%-3.27%, and by 0.41%-6.01% and 0.67%-1.59%, respectively, with every unit increase in soil pH. Furthermore, with every 1% increase in the absolute content of SOC, the BAc of Pb and Cu decreased by 4.04%-13.94% and 4.01%-34.7%, and by 8.98%-30.15% and 9.58%-20.03%, respectively. The in vivo bioassays results confirmed decrease in Pb concentrations in the liver, kidney, and blood of mice with the increase in Ferralosol pH and SOC content. These findings revealed that the health risks associated with accidental exposures to Pb- and Cu-contaminated soils with high pH and SOC level were relatively low, and the consistent in vivo and in vitro results for the BAc of Pb and Cu suggest the requirement for a swift and simple approach for assessing the risks of heavy metal contaminated soils. Thus, this study enhanced our understanding of the variations in risk assessments with soil properties of Pb- and Cu-contaminated soils, highlighting the role of soil characteristics in health risk assessment and remediation of contaminated soils.
Collapse
Affiliation(s)
- Jiaqi Cui
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; College of Resources and Environmental Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yangxiaoxiao Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Feng Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Zhineng Hong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Di Fang
- College of Resources and Environmental Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Jun Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China.
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Renkou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| |
Collapse
|
4
|
Dodd M, Lee D, Nelson J, Verenitch S, Wilson R. In vitro bioaccessibility round robin testing for arsenic and lead in standard reference materials and soil samples. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1486-1495. [PMID: 38329200 DOI: 10.1002/ieam.4891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
In this study, we assessed the suitability of using a standard reference material (SRM) other than National Institute of Standards and Technology (NIST) 2710a or NIST 2711a in USEPA Method 1340 to determine arsenic (As) and lead (Pb) in vitro bioaccessibility (IVBA) and the capabilities of Canadian-based laboratories to perform the method. Five laboratories participated in an initial round robin study and analyzed NIST 2710a, NIST 2711a, BGS119, and Enviromat SS-2. Intra- and inter-laboratory variability were generally acceptable with percentage relative standard deviations (RSD) of less than 20%. The mean total As and Pb concentrations obtained for BGS119 (332 and 936 mg/kg, respectively) and the mean IVBA values (As = 14.3% and Pb = 78.1%) suggested it may be a suitable and acceptable SRM, whereas the concentration of As in Enviromat SS-2 as received (3.2 mg/kg) was deemed too low. Ten soil samples from sites with varying land use were analyzed in a follow-up round robin study using the modified IVBA method that included BGS119 as SRM. The concentrations of As and Pb in the IVBA extracts reported by the participating laboratories were comparable. The mean As IVBA values for the field-collected samples ranged from 0.1% to 56.4%; for Pb, they ranged from 7.0% to 121%. The lowest IVBA values were measured in mine site samples; the highest values were associated with smelter-affected soils. The low IVBA values correlated with high iron content. Intra- and interlaboratory reproducibility were acceptable (RSD < 30%). Based on the findings of the study, laboratories can use the modified method to provide reproducible and comparable As and Pb IVBA data. The use of BGS119 as an alternative SRM to assess contaminated sites in the province of British Columbia for regulatory purposes is recommended, as it is representative of As and Pb concentrations in contaminated soils in British Columbia. Integr Environ Assess Manag 2024;20:1486-1495. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Matt Dodd
- Royal Roads University, Victoria, British Columbia, Canada
| | - Deanna Lee
- Health Canada, Vancouver, British Columbia, Canada
| | - Jasen Nelson
- BC Ministry of Environment and Climate Change Strategy, Victoria, British Columbia, Canada
| | - Sergei Verenitch
- Aquatech EnviroScience Laboratories Inc., Victoria, British Columbia, Canada
| | - Ross Wilson
- Wilson Scientific Consulting Inc., Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Xiao W, Yang Y, Tang N, Huang X, Zhang Q, Zhao S, Chen D, Guo B, Zhao Z, Jiang Y, Ye X. Innovative accumulative risk assessment of co-exposure to Cd, As, and Pb in contaminated rice based on their in vivo bioavailability and in vitro bioaccessibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168922. [PMID: 38030010 DOI: 10.1016/j.scitotenv.2023.168922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
The consumption of cadmium (Cd), arsenic (As), and lead (Pb) co-contaminated rice exposes humans to multiple heavy metals simultaneously, with relative bioavailability (RBA) and bioaccessibility (BAc) being important determinants of potential health risks. This study evaluated the relationship between in vivo RBA and in vitro BAc of Cd, As, and Pb in rice and their cumulative risk to humans. A total of 110 rice samples were collected in Zhejiang Province, China, and 10 subsamples with varying concentration gradients were randomly selected to measure RBA using a mouse model (liver, kidney, femur, blood, and urine as endpoints) and BAc using four in vitro assays (PBET, UBM, SBRC, and IVG). Our results indicated that Cd-RBA varied from 21.2 % to 67.5 %, As-RBA varied from 23.2 % to 69.3 %, and Pb-RBA varied from 22.2 % to 68.9 % based on mouse liver plus kidneys. The BAc values for Cd, As, and Pb in rice varied according to the assay. Compared to Cd and As, Pb exhibited a lower BAc in the gastric (GP) and intestinal (IP) phases. According to the relationship between the BAc and RBA values, IVG-GP (R2 = 0.92), SBRC-IP (R2 = 0.73), and UBM-GP (R2 = 0.80) could be used as predictors of Cd-, As-, and Pb-RBA in rice, respectively. The health risks associated with co-exposure to Cd, As, and Pb in contaminated rice for both adults and children exceeded the acceptable threshold, with Cd and As being the primary risk factors. The noncarcinogenic and carcinogenic risks were markedly reduced when the RBA and BAc values were incorporated into the risk assessment. Due to the risk overestimation inherent in estimating the risk level based on total metal concentration, our study provides a realistic assessment of the cumulative health risks associated with co-exposure to Cd, As, and Pb in contaminated rice using in vivo RBA and in vitro BAc bioassays.
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yonggui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ning Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaolei Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Guo
- Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhen Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yugen Jiang
- Hangzhou Fuyang District Agricultural Technology Extension Center, Fuyang 311400, China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
6
|
Asamoah BD, Dodd M, Yevugah LL, Borquaye LS, Boateng A, Nkansah MA, Darko G. Distribution and in-vitro bioaccessibility of potentially toxic metals in surface soils from a mining and a non-mining community in Ghana: implications for human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9875-9889. [PMID: 37878226 DOI: 10.1007/s10653-023-01776-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
The concentration and bioaccessibility of potentially toxic metals, including As, Cd, Cr, Cu, Mn, Ni, Pb and Zn, were determined in surface soil samples from a mining community (Kenyasi) and a non-mining community (Sunyani) in Ghana, to investigate the contribution of mining activities to the environmental burden of potentially toxic metals. The study found significant differences in metal concentrations (p < 0.05) in As, Cd, Cu, Mn, Ni, and Zn, but no significant difference (p > 0.05) in Pb and Cr between the two communities. The study found a moderate correlation between pH and metal concentrations in the mining community and a moderate positive correlation with As, Cd, Cr, Cu, Ni, and Zn in the non-mining community. The distribution pattern revealed elevated levels of toxic metals in the southeastern corridor of the mining community, which is close to a gold mine. Most heavy metals were concentrated in the commercial community's southern zone, with more residents and private elementary schools. Metal bioaccessibility was variable, and except for Cu and Zn, the mean bioaccessibility was less than 50% for a given metal. Contamination factor, geoaccumulation index, and soil enrichment factor suggested very high contamination of Cd, and a considerable to moderate contamination of As, Ni, Zn, and Cu at both the mining and non-mining communities. The above observations and the pollution and risk indices employed in this study confirmed that the mining community was more polluted (PLI = 2.145) than the non-mining community (PLI = 1.372). The total metal hazard (HI) exceeded thresholds by three and four times at non-mining and mining sites. Regular monitoring is necessary, especially in the mining community, to prevent soil metal accumulation.
Collapse
Affiliation(s)
- Benjamin Darko Asamoah
- Department of Chemical Sciences, University of Energy and Natural Resources, Sunyani, Ghana
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Matt Dodd
- School of Environment and Sustainability, Royal Roads University, Victoria, Canada
| | - Lily Lisa Yevugah
- Department of Geospatial Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| | | | - Alexander Boateng
- Department of Statistics and Actuarial Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Godfred Darko
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
7
|
Lu X, Yang Q, Wang H, Zhu Y. A global meta-analysis of the correlation between soil physicochemical properties and lead bioaccessibility. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131440. [PMID: 37086667 DOI: 10.1016/j.jhazmat.2023.131440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/15/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Soil physiochemical properties play a vital role in bioaccessibility-based health risk assessment as it can determine the bioaccessibility and the true risk of potentially toxic elements in soil. However, the effects of soil properties on bioaccessibility still remains unclear. In this paper, 17 of the 1454 literatures with 474 samples were identified, screened and reviewed for exploring the correlation between soil physicochemical properties and lead bioaccessibility (BAcPb) through a meta-analysis approach. Five soil physicochemical parameters including pH, SOM, Clay, CEC and T-Pb were systematically analyzed using Principal component analysis, Pearson correlation analysis and survival analysis. The results showed that pH of simulated gastric juice is a major source of heterogeneity of the correlation between soil pH and BAcPb. In the gastric phase, the effect of alkaline soil on high BAcPb (BAc >50%) is more sensitive, and the effect of acidic soil on low BAcPb (BAc <50%) is more sensitive. However, in the small intestinal phase, soil pH displays little impacts on BAcPb in acidic, alkaline and neutral soils. Although three principal components explained 66.2% and 64.9% of the total variance of the urban, agricultural, and mining soils in gastric and small intestinal phases, respectively, there was no strong evidence that soil type can influence the BAcPb. The results of present study provide insights into the correlation between soil properties and BAcPb, and prediction of the bioaccessibility and bioavailability of Pb in different types of soil.
Collapse
Affiliation(s)
- Xingyu Lu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Groundwater Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Qingchun Yang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Groundwater Resources and Environment, Jilin University, Changchun 130021, PR China.
| | - Hao Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Groundwater Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Yiwen Zhu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Groundwater Resources and Environment, Jilin University, Changchun 130021, PR China
| |
Collapse
|