1
|
Thomas MR, Badekila AK, Pai V, S N, Bhandary Y, Rai A, Kini S. Navigating Tumor Microenvironment Barriers with Nanotherapeutic Strategies for Targeting Metastasis. Adv Healthc Mater 2025:e2403107. [PMID: 39840497 DOI: 10.1002/adhm.202403107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC). The heterogeneity and genetic evolution of metastatic tumors can substantially impact the clinical effectiveness of therapeutic agents. Therefore, the therapeutic strategy shall target TME of all metastatic stages. Since the advent of nanotechnology, smart drug delivery strategies are employed to deliver effective drug formulations directly into tumors, ensuring controlled and sustained therapeutic efficacy. The state-of-the-art nano-drug delivery systems are shown to have innocuous modes of action in targeting the metastatic players of TME. Therefore, this review provides insight into the mechanism of cancer metastasis involving invasion, intravasation, systemic transport of circulating tumor cells (CTCs), extravasation, metastatic colonization, and angiogenesis. Further, the novel perspectives associated with current nanotherapeutic strategies are highlighted on different stages of metastasis.
Collapse
Affiliation(s)
- Mahima Rachel Thomas
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Anjana Kaveri Badekila
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Vishruta Pai
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Nijil S
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Yashodhar Bhandary
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575 018, India
| | - Ankit Rai
- Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Sudarshan Kini
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| |
Collapse
|
2
|
Raval H, Bhattacharya S, Bhirud D, Sangave PC, Gupta GL, Paraskar G, Jha M, Sharma S, Belemkar S, Kumar D, Maheshwari R. Fabrication of lactoferrin-chitosan-etoposide nanoparticles with melatonin via carbodiimide coupling: In-vitro & in-vivo evaluation for colon cancer. J Control Release 2025; 377:810-841. [PMID: 39637989 DOI: 10.1016/j.jconrel.2024.11.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
This study presents the development of melatonin-coated lactoferrin-chitosan nanoparticles (ETP-CS-LF-MLT-NPs) using ionic gelation and carbodiimide coupling for colorectal cancer treatment. The nanoparticles were characterized by an average size of 208.7 ± 1.25 nm, a zeta potential of 30.77 ± 1.21 mV, and 82.45 % drug encapsulation efficiency. In vitro drug release studies showed sustained, pH-responsive release, with 98.68 ± 4.12 % released at pH 5.5 over 24 h. The nanoparticles exhibited significant cytotoxicity in HCT116 cells (IC50 = 15.32 μg/mL), inducing ROS generation, apoptosis, and G2/M cell cycle arrest, with notable downregulation of BCL2 gene expression. Enhanced cellular uptake due to lactoferrin targeting improved therapeutic efficacy. In In vivo studies, the nanoparticles demonstrated significant tumor reduction and selective colon accumulation in a DMH-induced colorectal cancer rat model, along with improved pharmacokinetics, showing extended plasma circulation and bioavailability compared to free etoposide. Biocompatibility assays, including hemolysis (<1 %), platelet aggregation, and HET-CAM tests, confirmed the safety profiling of the prepared nanoparticles. The nanoparticles also inhibited Proteus mirabilis (ZOI = 1.9 cm) and exhibited promising effects on the gut microbiome of treated animals. Altogether, ETP-CS-LF-MLT-NPs hold great potential for targeted colorectal cancer therapy, improving drug delivery, tumor targeting, bioavailability, and reducing systemic toxicity.
Collapse
Affiliation(s)
- Harshvardhan Raval
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Darshan Bhirud
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Preeti Chidambar Sangave
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Girdhari Lal Gupta
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Gaurav Paraskar
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Megha Jha
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Satyam Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844102, India
| | - Sateesh Belemkar
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Mumbai, Maharashtra 400056, India
| | - Devendra Kumar
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Jadcherla, Hyderabad 509301, India
| |
Collapse
|
3
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
4
|
Wen Z, Qin S, Huang H, Xia X, Zhang W, Wu W. Functional exosomes modified with chitosan effectively alleviate anthracycline-induced cardiotoxicity. Int J Biol Macromol 2024; 277:134495. [PMID: 39111472 DOI: 10.1016/j.ijbiomac.2024.134495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Anthracyclines belong to a class of anti-tumor antibiotics, and their severe cardiotoxicity significantly limits their clinical use. Exosomes play key roles in intercellular communication, characterized by high biocompatibility and specific tissue and organ homing effects. In this study, doxorubicin, an anthracycline anticancer drug widely used in clinical chemotherapy, was selected as a model drug. To address the significant cardiotoxicity associated with doxorubicin, tumor exosomes are utilized as drug carriers. The homing effect of autologous exosomes enhances drug uptake by tumor cells and reduces cardiotoxicity. To enhance the stability of exosomes, improve therapeutic effectiveness, and reduce toxic side effects, chitosan was utilized to modify the surface of exosomes. Chitosan has a specific anti-tumor effect because it can target the CD44 receptor of tumor stem cells and interact with tumor cells through charge adsorption. Through in vitro cell experiments, in vivo pharmacokinetic experiments, and an in situ ectopic nude mouse tumor model, the study demonstrated that chitosan-modified tumor exosomes significantly alleviated the severe cardiotoxicity of doxorubicin, while also showing remarkable anti-tumor efficacy. This study introduces a novel approach to reduce the adverse side effects of anthracycline chemotherapeutic drugs and presents a highly promising nanocarrier delivery system.
Collapse
Affiliation(s)
- Zhiwei Wen
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Shuiling Qin
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Huajie Huang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xingle Xia
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wei Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
5
|
Bagherian MS, Zargham P, Zarharan H, Bakhtiari M, Mortezaee Ghariyeh Ali N, Yousefi E, Es-Haghi A, Taghavizadeh Yazdi ME. Antimicrobial and antibiofilm properties of selenium-chitosan-loaded salicylic acid nanoparticles for the removal of emerging contaminants from bacterial pathogens. World J Microbiol Biotechnol 2024; 40:86. [PMID: 38319399 DOI: 10.1007/s11274-024-03917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
In this study salicylic acid loaded containing selenium nanoparticles was synthesized and called SA@CS-Se NPs. the chitosan was used as a natural stabilizer during the synthesis process. Fourier transforms infrared spectroscopy (FTIR), Powder X-ray diffraction (XRD), field emission electron microscopy (FESEM), and transmission electron microscopy (TEM) were used to describe the physicochemical characteristics of the SA@CS-Se NPs. The PXRD examination revealed that the grain size was around 31.9 nm. TEM and FESEM techniques showed the spherical shape of SA@CS-Se NPs. Additionally, the analysis of experiments showed that SA@CS-Se NPs have antibacterial properties against 4 ATCC bacteria; So that with concentrations of 75, 125, 150, and 100 µg/ml, it inhibited the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus respectively. Also, at the concentration of 300 µg/ml, it removed 22.76, 23.2, 10.62, and 18.08% biofilm caused by E. coli, P. aeruginosa, B. subtilis, and S. aureus respectively. The synthesized SA@CS-Se NPs may find an application to reduce the unsafe influence of pathogenic microbes and, hence, eliminate microbial contamination.
Collapse
Affiliation(s)
| | - Parisa Zargham
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hoda Zarharan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maleknaz Bakhtiari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ehsan Yousefi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mohammad Ehsan Taghavizadeh Yazdi
- Department of Pharmacology, Medicinal Plants Pharmacological Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Garshasbi HR, Soleymani S, Naghib SM, Mozafari MR. Multi-stimuli-responsive Hydrogels for Therapeutic Systems: An Overview on Emerging Materials, Devices, and Drugs. Curr Pharm Des 2024; 30:2027-2046. [PMID: 38877860 DOI: 10.2174/0113816128304924240527113111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 09/21/2024]
Abstract
The rising interest in hydrogels nowadays is due to their usefulness in physiological conditions as multi-stimuli-responsive hydrogels. To reply to the prearranged stimuli, including chemical triggers, light, magnetic field, electric field, ionic strength, temperature, pH, and glucose levels, dual/multi-stimuli-sensitive gels/hydrogels display controllable variations in mechanical characteristics and swelling. Recent attention has focused on injectable hydrogel-based drug delivery systems (DDS) because of its promise to offer regulated, controlled, and targeted medication release to the tumor site. These technologies have great potential to improve treatment outcomes and lessen side effects from prolonged chemotherapy exposure.
Collapse
Affiliation(s)
- Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
7
|
Cegłowski M, Otłowski T, Gierczyk B, Smeets S, Lusina A, Hoogenboom R. Explosives removal and quantification using porous adsorbents based on poly(2-oxazoline)s with various degree of functionalization. CHEMOSPHERE 2023; 340:139807. [PMID: 37574087 DOI: 10.1016/j.chemosphere.2023.139807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Polymeric porous adsorbents are reported for removal of explosives, namely picric acid, 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN) and their subsequent quantification using direct analysis with ambient plasma mass spectrometry. The adsorbents are obtained by functionalization of short-chain poly(2-oxazoline)s with methyl ester side chains using 4-(aminomethyl)pyridine with a degree of functionalization equal to 0, 5, 10, and 20%. The subsequent step consist of cross-linking using a high internal phase emulsion procedure by further side-chain amidation with diethylenetriamine as crosslinker. Picric acid, RDX, and PETN were chosen as the model compounds as they belong to three different groups of explosives, in particular nitroaromatics, nitroamines, and nitrate esters, respectively. The adsorption isotherms, kinetics, as well as the influence of pH and temperature on the adsorption process was investigated. The porous adsorbents showed the highest maximum adsorption capacity towards picric acid, reaching 334 mg g-1, while PETN (80 mg g-1) and RDX (17.4 mg g-1) were less efficiently adsorbed. Subsequent quantification of the adsorbed explosives is performed by a specially designed ambient mass spectrometry setup equipped with a thermal heater. The obtained limits of detection were found to be 20-times improved compared to direct analysis of analyte solutions. The effectiveness of the proposed analytical setup is confirmed by successful quantification of the explosives in river water samples. The research clearly shows that functional porous adsorbents coupled directly with ambient mass spectrometry can be used for rapid quantification of explosives, which can be, e.g., used for tracking illegal manufacturing sites of these compounds.
Collapse
Affiliation(s)
- Michał Cegłowski
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | - Tomasz Otłowski
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Błażej Gierczyk
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Sander Smeets
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium
| | - Aleksandra Lusina
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium.
| |
Collapse
|
8
|
Veloso SRS, Marta ES, Rodrigues PV, Moura C, Amorim CO, Amaral VS, Correa-Duarte MA, Castanheira EMS. Chitosan/Alginate Nanogels Containing Multicore Magnetic Nanoparticles for Delivery of Doxorubicin. Pharmaceutics 2023; 15:2194. [PMID: 37765164 PMCID: PMC10538132 DOI: 10.3390/pharmaceutics15092194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, multicore-like iron oxide (Fe3O4) and manganese ferrite (MnFe2O4) nanoparticles were synthesized and combined with nanogels based on chitosan and alginate to obtain a multimodal drug delivery system. The nanoparticles exhibited crystalline structures and displayed sizes of 20 ± 3 nm (Fe3O4) and 11 ± 2 nm (MnFe2O4). The Fe3O4 nanoparticles showed a higher saturation magnetization and heating efficiency compared with the MnFe2O4 nanoparticles. Functionalization with citrate and bovine serum albumin was found to improve the stability and modified surface properties. The nanoparticles were encapsulated in nanogels, and provided high drug encapsulation efficiencies (~70%) using doxorubicin as a model drug. The nanogels exhibited sustained drug release, with enhanced release under near-infrared (NIR) laser irradiation and acidic pH. The nanogels containing BSA-functionalized nanoparticles displayed improved sustained drug release at physiological pH, and the release kinetics followed a diffusion-controlled mechanism. These results demonstrate the potential of synthesized nanoparticles and nanogels for controlled drug delivery, offering opportunities for targeted and on-demand release in biomedical applications.
Collapse
Affiliation(s)
- Sérgio R. S. Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Eva S. Marta
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Pedro V. Rodrigues
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), University of Minho, 4804-533 Guimarães, Portugal
| | - Cacilda Moura
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Carlos O. Amorim
- Physics Department and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Vítor S. Amaral
- Physics Department and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Miguel A. Correa-Duarte
- Centro de Investigación en Nanomateriais e Biomedicina (CINBIO), Universidad de Vigo, 36310 Vigo, Spain
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Sahu S, Niranjan R, Priyadarshini R, Lochab B. Benzoxazine-grafted-chitosan biopolymer films with inherent disulfide linkage: Antimicrobial properties. CHEMOSPHERE 2023; 328:138587. [PMID: 37019400 DOI: 10.1016/j.chemosphere.2023.138587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Synthesis and fabrication of naturally sourced biopolymers, especially chitosan, grafted with renewable small molecules have recently attracted attention as efficient antimicrobial agents and are highly desired for sustainable material development. Advantageous inherent functionalities in biobased benzoxazine extend the possibility of crosslinking with chitosan which holds immense potential. Herein, a low-temperature, greener facile methodology is adopted for the covalent confinement of benzoxazine monomers bearing aldehyde and disulfide linkages within chitosan to form benzoxazine-grafted-chitosan copolymer films. The association of benzoxazine as Schiff base, hydrogen bonding, and ring-opened structures enabled the exfoliation of chitosan galleries, and such host-guest mediated interactions demonstrated outstanding properties like hydrophobicity, good thermal, and solution stability due to the synergistic effects. Furthermore, the structures empowered excellent bactericidal properties against both E. coli and S. aureus as investigated by GSH loss, live/dead fluorescence microscopy, and morphological alteration on the cell surface by SEM. The work provides the benefits of disulfide-linked benzoxazines on chitosan, offering a promising avenue for general and eco-friendly usage in wound-healing and packaging material.
Collapse
Affiliation(s)
- Sangeeta Sahu
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Rashmi Niranjan
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
10
|
Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023; 9:523. [PMID: 37504402 PMCID: PMC10379988 DOI: 10.3390/gels9070523] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Polymer-based hydrogels are hydrophilic polymer networks with crosslinks widely applied for drug delivery applications because of their ability to hold large amounts of water and biological fluids and control drug release based on their unique physicochemical properties and biocompatibility. Current trends in the development of hydrogel drug delivery systems involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. In addition, developing injectable hydrogel formulations that are easily used and sustain drug release during this extended time is a growing interest. Another emerging trend in hydrogel drug delivery is the synthesis of nano hydrogels and other functional substances for improving targeted drug loading and release efficacy. Following these development trends, advanced hydrogels possessing mechanically improved properties, controlled release rates, and biocompatibility is developing as a focus of the field. More complex drug delivery systems such as multi-drug delivery and combination therapies will be developed based on these advancements. In addition, polymer-based hydrogels are gaining increasing attention in personalized medicine because of their ability to be tailored to a specific patient, for example, drug release rates, drug combinations, target-specific drug delivery, improvement of disease treatment effectiveness, and healthcare cost reduction. Overall, hydrogel application is advancing rapidly, towards more efficient and effective drug delivery systems in the future.
Collapse
Affiliation(s)
- Nguyen Hoc Thang
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Truong Bach Chien
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Dang Xuan Cuong
- Innovation and Entrepreneurship Center, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
11
|
Petrovici AR, Anghel N, Dinu MV, Spiridon I. Dextran-Chitosan Composites: Antioxidant and Anti-Inflammatory Properties. Polymers (Basel) 2023; 15:polym15091980. [PMID: 37177127 PMCID: PMC10180777 DOI: 10.3390/polym15091980] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This study presents the development of new formulations consisting of dextran (Dex) and chitosan (Ch) matrices, with fillings such as chitosan stearate (MCh), citric acid, salicylic acid, or ginger extract. These materials were characterized using Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and mechanical tests, and evaluated for antioxidant properties, including scavenging activities, metal chelation, and ferric ion reducing power, as well as anti-inflammatory properties, measuring the binding affinity between serum albumin and the bioactive substances, which can influence their bioavailability, transport, and overall anti-inflammatory effect. Compounds in ginger such as 6-gingerol reduce inflammation by inhibiting the production of inflammatory substances, such as prostaglandin, cytokines, interleukin-1β, and pro-inflammatory transcription factor (NF-κB) and, alongside citric and salicylic acids, combat oxidative stress, stabilizes cell membranes, and promote membrane fluidity, thereby preserving membrane integrity and function. Incorporating chitosan stearate in chitosan:dextran samples created a dense, stiff film with an elastic modulus approximately seventeen times higher than for the chitosan:dextran matrix. The Dex:Ch:MCh sample exhibited low compressibility at 48.74 ± 1.64 kPa, whereas the Dex:Ch:MCh:citric acid:salicylic acid composite had a compact network, allowing for 70.61 ± 3.9% compression at 109.30 kPa. The lipid peroxidation inhibitory assay revealed that Dex:Ch:MCh:citric acid had the highest inhibition value with 83 ± 0.577% at 24 h. The study highlights that adding active substances like ginger extract and citric acid to Dex:Ch composites enhances antioxidant properties, while modified chitosan improves mechanical properties. These composites may have potential medical applications in repairing cell membranes and regulating antioxidant enzyme activities.
Collapse
Affiliation(s)
- Anca Roxana Petrovici
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Narcis Anghel
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Iuliana Spiridon
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
12
|
Voci S, Gagliardi A, Ambrosio N, Salvatici MC, Fresta M, Cosco D. Gliadin Nanoparticles Containing Doxorubicin Hydrochloride: Characterization and Cytotoxicity. Pharmaceutics 2023; 15:pharmaceutics15010180. [PMID: 36678809 PMCID: PMC9860592 DOI: 10.3390/pharmaceutics15010180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Doxorubicin hydrochloride (DOX) is a well-known antitumor drug used as first line treatment for many types of malignancies. Despite its clinical relevance, the administration of the compound is negatively affected by dose-dependent off-target toxicity phenomena. Nanotechnology has helped to overcome these important limitations by improving the therapeutic index of the bioactive and promoting the translation of novel nanomedicines into clinical practice. Herein, nanoparticles made up of wheat gliadin and stabilized by polyoxyethylene (2) oleyl ether were investigated for the first time as carriers of DOX. The encapsulation of the compound did not significantly affect the physico-chemical features of the gliadin nanoparticles (GNPs), which evidenced a mean diameter of ~180 nm, a polydispersity index < 0.2 and a negative surface charge. The nanosystems demonstrated great stability regarding temperature (25−50 °C) and were able to retain high amounts of drug, allowing its prolonged and sustained release for up to a week. In vitro viability assay performed against breast cancer cells demonstrated that the nanoencapsulation of DOX modulated the cytotoxicity of the bioactive as a function of the incubation time with respect to the free form of the drug. The results demonstrate the potential use of GNPs as carriers of hydrophilic antitumor compounds.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Nicola Ambrosio
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Maria Cristina Salvatici
- Institute of Chemistry of Organometallic Compounds (ICCOM)-Electron Microscopy Centre (Ce.M.E.), National Research Council (CNR), Via Madonna del Piano n. 10, Sesto Fiorentino, 50019 Florence, Italy
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-369-4119
| |
Collapse
|