1
|
Tian M, Huang X, Li M, Lou P, Ma H, Jiang X, Zhou Y, Liu Y. Ferroptosis in diabetic cardiomyopathy: from its mechanisms to therapeutic strategies. Front Endocrinol (Lausanne) 2024; 15:1421838. [PMID: 39588340 PMCID: PMC11586197 DOI: 10.3389/fendo.2024.1421838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as structural and functional cardiac abnormalities in diabetes, and cardiomyocyte death is the terminal event of DCM. Ferroptosis is iron-dependent oxidative cell death. Evidence has indicated that iron overload and ferroptosis play important roles in the pathogenesis of DCM. Mitochondria, an important organelle in iron homeostasis and ROS production, play a crucial role in cardiomyocyte ferroptosis in diabetes. Studies have shown some anti-diabetic medicines, plant extracts, and ferroptosis inhibitors might improve DCM by alleviating ferroptosis. In this review, we systematically reviewed the evidence of ferroptosis in DCM. Anti-ferroptosis might be a promising therapeutic strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Meimei Tian
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinli Huang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingping Lou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Campanale A, Inserra A, Comai S. Therapeutic modulation of the kynurenine pathway in severe mental illness and comorbidities: A potential role for serotonergic psychedelics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111058. [PMID: 38885875 DOI: 10.1016/j.pnpbp.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.
Collapse
Affiliation(s)
| | - Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, PD, Italy.; IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
3
|
Huang D, Su Y, Li M, Xie C, Hu W, Wang S, Zheng N, Chen J, Lin Y, Cai W, Xiao J, Chen B, Hu N, Zhou F. (-)-Epicatechin gallate ameliorates cyprodinil-induced cardiac developmental defects through inhibiting aryl hydrocarbon receptor in zebrafish. Birth Defects Res 2024; 116:e2350. [PMID: 38761027 DOI: 10.1002/bdr2.2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Cyprodinil is a widely used fungicide with broad-spectrum activity, but it has been associated with cardiac abnormalities. (-)-Epicatechin gallate (ECG), a natural polyphenolic compound, has been shown to possess protective properties in cardiac development. METHODS In this study, we investigated whether ECG could mitigate cyprodinil-induced heart defects using zebrafish embryos as a model. Zebrafish embryos were exposed to cyprodinil with or without ECG. RESULTS Our results demonstrated that ECG significantly improved the survival rate, embryo movement, and hatching delay induced by cyprodinil. Furthermore, ECG effectively ameliorated cyprodinil-induced cardiac developmental toxicity, including pericardial anomaly and impairment of cardiac function. Mechanistically, ECG attenuated the cyprodinil-induced alterations in mRNA expression related to cardiac development, such as amhc, vmhc, tbx5, and gata4, as well as calcium ion channels, such as ncx1h, atp2a2a, and cdh2. Additionally, ECG was found to inhibit the activity of the aryl hydrocarbon receptor (AhR) signaling pathways induced by cyprodinil. CONCLUSIONS In conclusion, our findings provide evidence for the protective effects of ECG against cyprodinil-induced cardiac developmental toxicity, mediated through the inhibition of AhR activity. These findings contribute to a better understanding of the regulatory mechanisms and safe utilization of pesticide, such as cyprodinil.
Collapse
Affiliation(s)
- Dongqin Huang
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Yuchao Su
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Mingmei Li
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Chengwei Xie
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Weibin Hu
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Shuxiang Wang
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Nanmei Zheng
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Jianhui Chen
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Yueyun Lin
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Weize Cai
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Jianjia Xiao
- Neonatology, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Baojia Chen
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Nanping Hu
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| | - Fushan Zhou
- Scientific Research Center, Anxi County Hospital, Quanzhou, People's Republic of China
| |
Collapse
|
4
|
Zhao W, Chen Y, Hu N, Long D, Cao Y. The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116023. [PMID: 38290311 DOI: 10.1016/j.ecoenv.2024.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
An in vivo model is necessary for toxicology. This review analyzed the uses of zebrafish (Danio rerio) in toxicology based on bibliometrics. Totally 56,816 publications about zebrafish from 2002 to 2023 were found in Web of Science Core Collection, with Toxicology as the top 6 among all disciplines. Accordingly, the bibliometric map reveals that "toxicity" has become a hot keyword. It further reveals that the most common exposure types include acute, chronic, and combined exposure. The toxicological effects include behavioral, intestinal, cardiovascular, hepatic, endocrine toxicity, neurotoxicity, immunotoxicity, genotoxicity, and reproductive and transgenerational toxicity. The mechanisms include oxidative stress, inflammation, autophagy, and dysbiosis of gut microbiota. The toxicants commonly evaluated by using zebrafish model include nanomaterials, arsenic, metals, bisphenol, and dioxin. Overall, zebrafish provide a unique and well-accepted model to investigate the toxicological effects and mechanisms. We also discussed the possible ways to address some of the limitations of zebrafish model, such as the combination of human organoids to avoid species differences.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yuna Chen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, PR China.
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
5
|
Wang X, Hu M, Li M, Huan F, Gao R, Wang J. Effects of exposure to 3,6-DBCZ on neurotoxicity and AhR pathway during early life stages of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115892. [PMID: 38157798 DOI: 10.1016/j.ecoenv.2023.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Polyhalogenated carbazoles (PHCZs) are emerging environmental pollutants, yet limited information is available on their embryotoxicity and neurotoxicity. Therefore, the current work was performed to investigate the adverse effects of 3,6-dibromocarbazole (3,6-DBCZ), a typical PHCZs homolog, on the early life stages of zebrafish larvae. It revealed that the 96-hour post-fertilization (hpf) median lethal concentration (LC50) value of 3,6-DBCZ in zebrafish larvae was determined to be 0.7988 mg/L. Besides, 3,6-DBCZ reduced survival rates at concentrations ≥ 1 mg/L and decreased hatching rates at ≥ 0.25 mg/L at 48 hpf. In behavior tests, it inhibited locomotor activities and reduced the frequency of recorded acceleration states in response to optesthesia (a sudden bright light stimulus) at concentrations ≥ 160 μg/L. Meanwhile, 3,6-DBCZ exposure decreased the frequency of recorded acceleration states in the startle response (tapping mode) at concentrations ≥ 6.4 μg/L. Pathologically, with the transgenic zebrafish model (hb9-eGFP), we observed a strikingly decreased axon length and number in motor neurons after 3,6-DBCZ treatment, which may be ascribed to the activation of the AhR signaling pathway, as evidenced by the molecular docking analysis and Microscale thermophoresis (MST) assay suggested that 3,6-DBCZ binding to AhR-ARNT2 compound proteins. Through interaction with AhR-ARNT, a striking reduction of the anti-oxidative stress (sod1/2, nqo1, nrf2) and neurodevelopment-related genes (elavl3, gfap, mbp, syn2a) were observed after 3,6-DBCZ challenge, accompanied by a marked increased inflammatory genes (TNFβ, IL1β, IL6). Collectively, our findings reveal a previously unrecognized adverse effect of 3,6-DBCZ on zebrafish neurodevelopment and locomotor behaviors, potentially mediated through the activation of the AhR pathway. Furthermore, it provides direct evidence for the toxic concentrations of 3,6-DBCZ and the potential target signaling in zebrafish larvae, which may be beneficial for the risk assessment of the aquatic ecosystems.
Collapse
Affiliation(s)
- Xi Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Miaoyang Hu
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Muhan Li
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Fei Huan
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jun Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
6
|
Liu ST, Zha KJ, Li PJ, Gao JB, Zhang YG. Protective effect of naringin against radiation-induced heart disease in rats via Sirt1/NF-κB signaling pathway and endoplasmic reticulum stress. Chem Biol Drug Des 2024; 103:e14453. [PMID: 38230793 DOI: 10.1111/cbdd.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024]
Abstract
This study was designed to explore the protective effect and mechanism of naringin (NG) on radiation-induced heart disease (RIHD) in rats. Rats were divided into four x-ray (XR) irradiation groups with different absorbed doses (0/10/15/20 Gy), or into three groups (control, XR, and XR + NG groups). Subsequently, the ultrasonic diagnostic apparatus was adopted to assess and compare the left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular internal diameter at end diastole (LVIDd), and left ventricular internal diameter at end systole (LVIDs) in rats. Hematoxylin-eosin (H&E) staining and Masson staining were applied to detect the pathological damage and fibrosis of heart tissue. Western blot was used to measure the expression levels of myocardial fibrosis-related proteins, endoplasmic reticulum stress-related proteins, and Sirt1 (silent information regulator 1)/NF-κB (nuclear factor kappa-B) signaling pathway-related proteins in cardiac tissues. Additionally, enzyme-linked immunosorbent assay was utilized to detect the activities of pro-inflammatory cytokines, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) in cardiac tissue. The results showed that NG treatment significantly attenuated the 20 Gy XR-induced decline of LVEF and LVFS and the elevation of LVIDs. Cardiac tissue damage and fibrosis caused by 20 Gy XR were significant improved after NG treatment. Meanwhile, in rats irradiated by XR, marked downregulation was identified in the expressions of fibrosis-related proteins (Col I, collagen type I; α-SMA, α-smooth muscle actin; and TGF-β1, transforming growth factor-beta 1) and endoplasmic reticulum stress-related proteins (GRP78, glucose regulatory protein 78; CHOP, C/EBP homologous protein; ATF6, activating transcription factor 6; and caspase 12) after NG treatment. Moreover, NG treatment also inhibited the production of pro-inflammatory cytokines [interleukin-6, interleukin-1β, and monocyte chemoattractant protein-1 (MCP-1)], reduced the expression of MDA, and promoted the activities of SOD and CAT. Also, NG treatment promoted Sirt1 expression and inhibited p65 phosphorylation. Collectively, XR irradiation induced cardiac injury in rats in a dose-dependent manner. NG could improve the cardiac injury induced by XR irradiation by inhibiting endoplasmic reticulum stress and activating Sirt1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shu-Ting Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai-Ji Zha
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pei-Jie Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Bo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong-Gao Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|