1
|
Wang J, Hou J, Wang L, Zhu Z, Han B, Chen L, Liu W. Pollution characteristics, environmental issues, and green development of neonicotinoid insecticides in China: Insights from Imidacloprid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125394. [PMID: 39586452 DOI: 10.1016/j.envpol.2024.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Imidacloprid (IMI), a leading neonicotinoid insecticide, is widely used in China. Nevertheless, owing to its high toxicity to pollinators, regulatory scrutiny of its usage has increased in recent years. Despite this, no relevant issues have been announced in China, and its usage continues to rise. In this study, we systematically reviewed the development history, pollution characteristics, and environmental problems associated with IMI in China, which is imperative to promote its green development. The results show that most IMI products (97.1%) in China are registered for agricultural use. Owing to its extensive use and strong migration ability in different environmental matrices, IMI has been broadly detected in multiple environmental media. The average detection rate (DR) of IMI in soils, ambient water, and sediments were 90.7%, 81.3% and 84.5%, respectively, and the corresponding concentrations were 54.6 ± 83.8 ng/g dry weight (dw), 32.8 ± 103 ng/L, and 1.7 ± 2.9 ng/g dw, respectively, indicating high IMI abundance in multiple environmental media in China. The spatiotemporal distribution of IMI was generally determined by its application modes, transport, and degradation rates. IMI is commonly overused in China, leading to the development of high IMI resistance in many pests, and a high DR of IMI in food, drinking water, and human bodies. To alleviate IMI pollution in China, the joint efforts of the government, farmers, and scientists are necessary, including but not limited to formulating laws and regulations, strengthening governmental supervision, improving farmers' knowledge of IMI use, and promoting technological innovation in IMI and application methods.
Collapse
Affiliation(s)
- JinZe Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jie Hou
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiXi Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - ZiYang Zhu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - BingJun Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - LiYuan Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - WenXin Liu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Fu J, Li S, Yin S, Zhao X, Zhao E, Li L. Comprehensive effects of acetamiprid uptake and translocation from soil on pak choi and lettuce at the environmental level. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106178. [PMID: 39672607 DOI: 10.1016/j.pestbp.2024.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 12/15/2024]
Abstract
Acetamiprid (ACE) is widely used in agriculture to control pests. However, its accumulation in soil and subsequent translocation to plants can impact plant growth and development through mechanisms that remain unclear. This study evaluated the comprehensive effects of residual ACE from soil on cultivated pak choi and lettuce at environmental levels. Results showed that more than 90 % of ACE residues in the soils dissipated within 14 days. The average root concentration factor (RCF) values of pak choi and lettuce were 1.442 and 0.318, respectively, while the average translocation factor (TF) values were 2.145 for pak choi and 5.346 for lettuce. Seedling height increased by 6.32 % in pak choi but decreased by 8.54 % in lettuce. Furthermore, chlorophyll content decreased by 14.6 % in pak choi and increased by 23.7 % in lettuce. Non-targeted metabolomics analysis showed significant disturbances in carbohydrates, amino acids, and secondary metabolite levels. Additionally, KEGG pathway analysis revealed the down-regulation of amino acid metabolites in both vegetables, alongside an up-regulation of flavone and flavonol biosynthesis in pak choi. This research enhances the understanding of the effects and underlying metabolic mechanism of ACE on different vegetables.
Collapse
Affiliation(s)
- Jizhen Fu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Suzhen Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shijie Yin
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaojun Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Ercheng Zhao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
3
|
Zhang Y, Zhu W, Wang Y, Li X, Lv J, Luo J, Yang M. Insight of neonicotinoid insecticides: Exploring exposure, mechanisms in non-target organisms, and removal technologies. Pharmacol Res 2024; 209:107415. [PMID: 39306021 DOI: 10.1016/j.phrs.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Neonicotinoid insecticides (NEOs) have garnered global attention due to their selective toxicity to insects and minimal impact on mammals. However, growing concerns about their extensive use and potential adverse effects on the ecological environment and non-target organisms necessitate further investigation. This study utilized bibliometric tools to analyze Web of Science data from 2003 to 2024, elucidating the current research landscape, identifying key research areas, and forecasting future trends related to NEOs. This paper provides an in-depth analysis of NEO exposure in non-target organisms, including risk assessments for various samples and maximum residue limits established by different countries. Additionally, it examines the impacts and mechanisms of NEOs on non-target organisms. Finally, it reviews the current methods for NEO removal and degradation. This comprehensive analysis provides valuable insights for regulating NEO usage and addressing associated exposure challenges.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wanxuan Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Xueli Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianxin Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
4
|
Luo H, Sun Y, Pan J, Ding P, Wen P, Yu Y, Cai L, Hu G. Residual distribution and risk assessment of neonicotinoids in urban green space soils of the pearl river delta, South China: A socioeconomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135330. [PMID: 39084007 DOI: 10.1016/j.jhazmat.2024.135330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Urban green spaces are the soil component in cities that interacts most closely with humans. This study investigated the residues of seven neonicotinoids (NEOs) in soils from urban green spaces within the Pearl River Delta (PRD) region and analyzed the correlation between the residue characteristics and the region's economic development. Notably, we introduced the Nemerow Index method, a comprehensive approach, to quantify the overall pollution level of NEOs in the soil of urban park green spaces and utilized this to assess the cumulative exposure probability risks for different populations in this scenario. We found that: (1) The soil of urban park green spaces exhibited varying degrees of NEOs contamination (Σ7NEOs: N.D.-137.31; 6.25 μg/kg), with imidacloprid and clothianidin constituting the highest proportions (89.46 % and 83.60 %); (2) The residual levels of NEOs in Children's Park were significantly higher than those in community parks within Guangzhou, with an average value of 13.30 μg/kg compared to 3.30 μg/kg; (3) The residual characteristics of NEOs exhibited a positive correlation with regional economic development; specifically, the per capita GDP well correlated with IMIRPF, a summation of seven NEOs in imidacloprid equivalents via relative potency factors (R2 =0.86). Regions with higher economic development typically exhibited elevated IMIRPF levels; (4) The fitted cumulative probability distributions for average daily exposure doses revealed that children's exposure was an order of magnitude higher than adults'. Despite this, the exposure risks for both groups remained within acceptable limits.
Collapse
Affiliation(s)
- Haojie Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Yanan Sun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jun Pan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Pengchong Wen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Limei Cai
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
5
|
Li X, Yu S, Huang K, Zhu W, Ye G, Qi J, Shu Y, Chen X, Wang Z, Maimaiti S, Jin H, Lu S. Neonicotinoid residues in fruits and vegetables in Shenzhen: Assessing human exposure and health risks. CHEMOSPHERE 2024; 364:143267. [PMID: 39236915 DOI: 10.1016/j.chemosphere.2024.143267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
The extensive use of neonicotinoids (NEOs) in agricultural production has led to their pervasive presence in various environmental matrices, including human samples. Given the central role of fruits and vegetables in daily human diets, it is crucial to evaluate the levels of NEOs residues and their potential health risks. In this study, 3104 vegetable samples and 1567 fruit samples from the Shenzhen city were analyzed. Using the relative potency factor (RPF) method, the residue levels of six representative neonicotinoids, including imidacloprid (IMI), acetamiprid (ACE), thiamethoxam (THM), dinotefuran (DIN), clothianidin (CLO), thiacloprid (THI), were systematically evaluated. The estimated daily intake (EDI), hazard quotient (HQ), and hazard index (HI) for both children and adults were calculated to gauge the prevalence and potential health risks of NEOs in fruits and vegetables. Acetamiprid (ACE) was the most frequently detected NEO in vegetables (69.4%) and fruits (73.9%), making it the predominant contributor to total residues. Further analyses indicated notably higher levels of imidacloprid-equivalent total neonicotinoids (IMIRPF) in root and tuber vegetables (3025 μg/kg) and other fruits (243 μg/kg). A significant strong positive correlation (r = 0.748, P < 0.05) was observed between thiamethoxam (THM) and clothianidin (CLO), possibly due to their shared metabolic pathways. Although the mean HI values for adults and children from daily fruit (adults: 0.02, children: 0.01) and vegetable (adults: 0.02, children: 0.03) intake were generally below safety thresholds, some maximum HI values exceeded these limits, indicating that the potential health risks associated with NEOs exposure should not be overlooked.
Collapse
Affiliation(s)
- Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Sisi Yu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Ke Huang
- Food Inspection and Quarantine Center, Shenzhen Customs, China
| | - Wenchao Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China; Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, 518107, China
| | - Gang Ye
- Food Inspection and Quarantine Center, Shenzhen Customs, China
| | - Jialiang Qi
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yanbo Shu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xirui Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zenghan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Saiheidaiguli Maimaiti
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Hongwei Jin
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, 518107, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
6
|
Wang Y, Shen J, Lang H, Shen F, Zhang L, Fang H, Yu Y. Elevated temperature magnifies the acute and chronic toxicity of clothianidin to Eisenia fetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124210. [PMID: 38795815 DOI: 10.1016/j.envpol.2024.124210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Pesticide residue and thermal stress resulting from global climate change are parallel stressors for soil fauna. However, it remains ambiguous how elevated temperatures and pesticides can interact to threaten soil fauna. In the study, the acute and chronic clothianidin (CTD) toxicity to earthworms (Eisenia fetida) at different temperatures, and the effect of increasing temperature on antioxidant defense mechanisms in response to CTD were investigated. The acute toxicity of CTD was exacerbated by increased temperature in both filter paper contact tests (a decrease in the 48-h median lethal concentration (LC50) from 0.077 μg/cm2 at 20 °C to 0.009 μg/cm2 at 30 °C) and natural soil tests (a decrease in the 48-h LC50 from 0.774 mg/kg at 20 °C to 0.199 mg/kg at 30 °C). Exposure to CTD or high temperature (30 °C) triggered reactive oxygen species (ROS) overgeneration and increased antioxidant enzyme activities in earthworms; and the effect was particularly pronounced after exposure to both higher temperatures and CTD. At 20 and 25 °C, there was no significant change in the growth and reproduction of E. fetida after 56-d exposure to CTD-contaminated soil. However, the combined effect of CTD and high temperature (30 °C) significantly reduced the weight change rate, cocoon number, hatching rate, and number of juveniles on day 56. These results indicated that elevated temperature could aggravate acute and chronic CTD toxicity to earthworms. The findings emphasize that evaluating changes in pesticide toxicity under global warming is worth further investigation.
Collapse
Affiliation(s)
- Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiatao Shen
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hongbin Lang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fan Shen
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Liao L, Sun T, Gao Z, Lin J, Gao M, Li A, Gao T, Gao Z. Neonicotinoids as emerging contaminants in China's environment: a review of current data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51098-51113. [PMID: 39110283 DOI: 10.1007/s11356-024-34571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2024] [Indexed: 09/06/2024]
Abstract
Neonicotinoids (NEOs), the most widely used class of insecticides, are pervasive in the environment, eliciting concerns due to their hydrophilicity, persistence, and potential ecological risks. As the leading pesticide consumer, China shows significant regional disparities in NEO contamination. This review explores NEO distribution, sources, and toxic risks across China. The primary NEO pollutants identified in environmental samples include imidacloprid, thiamethoxam, and acetamiprid. In the north, corn cultivation represents the principal source of NEOs during wet seasons, while rice dominates in the south year-round. The high concentration levels of NEOs have been detected in the aquatic environment in the southern regions (130.25 ng/L), the urban river Sects. (157.66 ng/L), and the downstream sections of the Yangtze River (58.9 ng/L), indicating that climate conditions and urban pollution emissions are important drivers of water pollution. Neonicotinoids were detected at higher levels in agricultural soils compared to other soil types, with southern agricultural areas showing higher concentrations (average 27.21 ng/g) than northern regions (average 12.77 ng/g). Atmospheric NEO levels were lower, with the highest concentration at 1560 pg/m3. The levels of total neonicotinoid pesticides in aquatic environments across China predominantly exceed the chronic toxicity ecological threshold of 35 ng/L, particularly in the regions of Beijing and the Qilu Lake Basin, where they likely exceed the acute toxicity ecological threshold of 200 ng/L. In the future, efforts should focus on neonicotinoid distribution in agriculturally developed regions of Southwest China, while also emphasizing their usage in urban greening and household settings.
Collapse
Affiliation(s)
- Lingzhi Liao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, PR China
| | - Ting Sun
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jianing Lin
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China.
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Meng Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ao Li
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Teng Gao
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, PR China
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ziqin Gao
- Fuxin Experimental Middle School, Fuxin, 123099, PR China
| |
Collapse
|
8
|
Huang Y, Zhang X, Li Z. Analysis of nationwide soil pesticide pollution: Insights from China. ENVIRONMENTAL RESEARCH 2024; 252:118988. [PMID: 38663666 DOI: 10.1016/j.envres.2024.118988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
China is a typical agricultural country that heavily relies on pesticides. Some pesticides can remain in the soil after application and thus pose a significant threat to human health. In order to characterize the status and hazards of nationwide soil contamination, this study extracted concentration data from published literature and analyzed them by a scoring approach, standard comparison and health risk assessment. For the soil pollution score, northern regions got the highest values, such as Henan (0.63), Liaoning (0.55), Heilongjiang (0.54) and Jilin (0.53), which implies high soil pesticide residues in these provinces. In contrast, Qinghai (-0.77), Guizhou (-0.64) and Tibet (-0.63) had lower scores. China's soil pesticide standards cover only 16 pesticides, and these pesticide concentrations were all below the corresponding standards. Direct exposure to soil pesticides in this study generally posed a negligible risk to children. Furthermore, pesticide dissipation and usage intensity in each province were analyzed as they were possible influences on pollution. The result showed that soil in the northern regions could accumulate more pesticides than those in the southern regions, and this geographic pattern was basically consistent with the distribution of soil pollution. However, the relationship between agricultural activities and soil pollution was less well characterized. It is recommended to establish a long-term monitoring database for pesticides and include more pesticides in regulatory frameworks. Additionally, efforts to accelerate pesticide degradation and shift the planting structure to reduce pesticide usage can help alleviate the pressure on soil from pesticides. This study can serve as a critical reference for policymakers and stakeholders in the field of agriculture.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
9
|
Huang M, Wang Y, Wang Y, Lin G, Wen X, Xu X, Hong S, Chen Y, Lin H, Yang Z, Zhao K, Liu J, Wang J, Wang H, Wang N, Chen Y, Jiang Q. Exposure of pregnant women to neonicotinoids in Wenzhou City, East China: A biomonitoring study. ENVIRONMENT INTERNATIONAL 2024; 189:108811. [PMID: 38870579 DOI: 10.1016/j.envint.2024.108811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND China produces and consumes a large amount of neonicotinoids. A non-negligible exposure to neonicotinoids might occur for Chinese pregnant women, but relevant data remain limited. OBJECTIVE To investigate the exposure to neonicotinoids by urinary biomonitoring in pregnant women from Wenzhou City, East China. METHODS We selected 432 pregnant women in Wenzhou City in 2022. A total of eight parent neonicotinoids and four metabolites were determined in single spot urine by liquid chromatography coupled to mass spectrometry. Basic characteristics, physical activity, pre-pregnant body mass index, and intake of drinking water and food were investigated by the questionnaire. Health risk was assessed by hazard quotient (HQ) and hazard index (HI) based on human safety thresholds derived from different health endpoints. RESULTS Neonicotinoids and their metabolites in urine had a detection frequency between 0 % and 80.1 %. At least one neonicotinoid or metabolite was detected in 93.5 % of urine samples. Except for clothianidin (51.2 %) and N-desmethyl-acetamiprid (80.1 %), the detection frequencies of other neonicotinoids and metabolites ranged from 0 % to 43.8 %. The summed concentrations of all neonicotinoids and their metabolites ranged from < LOD to 222.83 μg/g creatinine with the median concentration of 2.58 μg/g creatinine. Maternal age, educational level, occupation, household income, screen time, and pre-pregnant body mass index were associated with detection frequencies or concentrations of neonicotinoids and their metabolites. Pregnant women with higher consumption frequencies of wheat, fresh vegetable, shellfish, fresh milk, and powdered milk had higher detection frequencies of neonicotinoids and their metabolites. Both HQ and HI were less than one. CONCLUSIONS Overall, pregnant women in Wenzhou City showed a notable frequency of exposure to at least one neonicotinoid, although the exposure frequency for each specific neonicotinoid was generally low. Several food items derived from plants and animals were potential exposure sources. A low health risk was found based on current safety thresholds.
Collapse
Affiliation(s)
- Min Huang
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China
| | - Yuanping Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Yi Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Guankai Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325000, Zhejiang Province, China
| | - Xiaoting Wen
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China
| | - Xiaoyang Xu
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China
| | - Sumiao Hong
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China
| | - Yuanyuan Chen
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China
| | - Haiping Lin
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China
| | - Zichen Yang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Ke Zhao
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiaqi Liu
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiwei Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China.
| | - Na Wang
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China.
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1G5Z3, Canada
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Zhang Y, Jiang B, Gao Z, Wang M, Feng J, Xia L, Liu J. Health risk assessment of soil heavy metals in a typical mining town in north China based on Monte Carlo simulation coupled with Positive matrix factorization model. ENVIRONMENTAL RESEARCH 2024; 251:118696. [PMID: 38493860 DOI: 10.1016/j.envres.2024.118696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The accumulation of heavy metals (HMs) in soil caused by mineral resource exploitation and its ancillary industrial processes poses a threat to ecology and public health. Effective risk control measures require a quantification of the impacts and contributions to health risks from individual sources of soil HMs. Based on high-density sampling, soil contamination risk indexes, positive matrix factorization (PMF) model, Monte Carlo simulation and human health risk analysis model were applied to investigate the risk of HMs in a typical mining town in North China. The results showed that As was the most dominant soil pollutant factor, Cd and Hg were the most dominant soil ecological risk factors, and Cr and Ni were the most dominant health risk factors in the study area. Overall, both pollution and ecological risks were at low levels, while there were still some higher hazard areas located in the central and south-central part of the region. According to the probabilistic health risk assessment (HRA), children suffered greater health risks than adults, with 21.63% of non-carcinogenic risks and 53.24% of carcinogenic risks exceeding the prescribed thresholds (HI > 1 and TCR>1E-4). The PMF model identified five potential sources: fuel combustion (FC), processing of building materials with limestone as raw materials (PBML), industry source (IS), iron ore mining combined with garbage (IOG), and agriculture source (AS). PBML is the primary source of soil HM contamination, as well as the major anthropogenic source of carcinogenic risk for all populations. Agricultural inputs associated with As are the major source of non-carcinogenic risk. This study offers a good example of probabilistic HRA using specific sources, which can provide a valuable reference for strategy establishment of pollution remediation and risk prevention and control.
Collapse
Affiliation(s)
- Yuqi Zhang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Bing Jiang
- The Fourth Geological Brigade of Shandong Provincial Bureau of Geology and Mineral Resources, Weifang 261021, China; Key Laboratory of Coastal Zone Geological Environment Protection of Shandong Geology and Mineral Exploration and Development Bureau, Weifang 261021, China.
| | - Zongjun Gao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Min Wang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jianguo Feng
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Lu Xia
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jiutan Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
11
|
Wang Y, Gesang Y, Wang Y, Yang Z, Zhao K, Liu J, Li C, Ouzhu L, Wang H, Chen Y, Jiang Q. Source and health risk of urinary neonicotinoids in Tibetan pregnant women. CHEMOSPHERE 2024; 349:140774. [PMID: 38016522 DOI: 10.1016/j.chemosphere.2023.140774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
High altitude could influence the level of exposure to neonicotinoids, but relevant data remain limited for people living in Tibet. We investigated 476 Tibetan pregnant women from Lhasa of Tibet, China in 2021 and measured eight neonicotinoids and four metabolites in urine. Food consumption was investigated by a food frequency questionnaire. Health risk was assessed by using hazard quotient (HQ) and hazard index (HI) based on acceptable daily dose or chronic reference dose. Neonicotinoids and metabolites were overall detected in 56.5% of urine samples with a median concentration being 0.73 μg g-1 creatinine. Four neonicotinoids or metabolites were detected in more than 10% of urine samples, including N-desmethyl-acetamiprid (47.5%), clothianidin (15.5%), thiamethoxam (16.0%), and imidacloprid (10.5%). Annual household income, family smoking, and pre-pregnancy body mass index were associated with the detection frequencies of neonicotinoids. Pregnant women with a higher consumption frequency of wheat, rice, fresh vegetable, fresh fruit, beef and mutton, fresh milk, yoghourt, candy and chocolate, or carbonated drinks had a higher detection frequency of neonicotinoids. Both HQ and HI were less than one. There was an evident exposure to neonicotinoids in Tibetan pregnant women with both plant- and animal-derived food items as exposure sources, but a low health risk was found based on current safety thresholds.
Collapse
Affiliation(s)
- Yuanping Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yangzong Gesang
- Department of Science and Education, Tibet Autonomous Region People's Hospital, Lhasa, 850000, China
| | - Yi Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zichen Yang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ke Zhao
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Jiaqi Liu
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Chunxia Li
- Obstetrics and Gynecology Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Luobu Ouzhu
- Administrative Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1G5Z3, Canada
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Gu S, Fu L, Wang J, Sun X, Wang X, Lou J, Zhao M, Wang C, Zhang Q. MtDNA Copy Number in Oral Epithelial Cells Serves as a Potential Biomarker of Mitochondrial Damage by Neonicotinoid Exposure: A Cross-Sectional Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15816-15824. [PMID: 37819077 DOI: 10.1021/acs.est.3c03835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
As the mitochondrial DNA copy number (mtDNAcn) has been reported to be a biomarker for mtDNA damage in honeybees when exposed to sublethal neonicotinoids, the feasibility of using human mitochondria as a predictor upon neonicotinoid exposure remains elusive. This study investigated the association between the urinary neonicotinoid and the relative mtDNAcn (RmtDNAcn) of oral epithelial cells collected in a cross-sectional study with repeated measurements over 6 weeks. The molecular mechanism underlying neonicotinoid-caused mitochondrial damage was also examined by in vitro assay. Herein, the average integrated urinary neonicotinoid (IMIRPF) concentration ranged from 8.01 to 13.70 μg/L (specific gravity-adjusted) during the sampling period. Concomitantly, with an increase in the urinary IMIRPF, the RmtDNAcn significantly increased from 1.20 (low group) to 1.93 (high group), indicating potential dose-dependent mitochondrial damage. Furthermore, the linear regression analysis confirmed the significant correlation between the IMIRPF and RmtDNAcn. Results from in vitro assays demonstrated that neonicotinoid exposure led to the inhibition of the genes encoding mitochondrial oxidative phosphorylation (OXPHOS) complexes I and III (e.g., ND2, ND6, CytB, and CYC1), accompanied by increased reactive oxygen species production in SH-SY5Y cells. Conjointly, neonicotinoid exposure led to mitochondrial dysfunction and a resulting increase in the RmtDNAcn, which may serve as a plausible biomarker in humans.
Collapse
Affiliation(s)
- Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Lili Fu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Jing Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Xiaohui Sun
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Ximing Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Jianlin Lou
- School of Medicine, and The First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| |
Collapse
|