1
|
Lee G, Jang SE, Jeong WG, Tsang YF, Baek K. Stabilization mechanism and long-term stability of endogenous heavy metals in manure-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174801. [PMID: 39009162 DOI: 10.1016/j.scitotenv.2024.174801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Pyrolysis has been proposed to stabilize heavy metals present in livestock manure. However, many studies have not considered the applicability of manure-derived biochar containing endogenous heavy metals as an agricultural fertilizer. This study investigated the mechanisms through which pyrolysis stabilizes endogenous heavy metals in swine manure and the long-term stability of endogenous heavy metals in the biochar. As pyrolysis temperature increased from 300 °C to 700 °C, the potential ecological risk index decreased from 46.3 to 4.8 because the unstable fraction converted to organic-sulfide bonds and residues. Biochar prepared at 600 °C was the most stable and met the World Health Organization's phyto-availability standards (Cu 10 mg/kg, Zn 0.6 mg/kg). Fourier transform infrared spectroscopy and X-ray diffraction analyses indicated that endogenous heavy metals were stabilized by complexation with organic matter and precipitated as metal-phosphate forms. After 40 cycles of wet-dry aging, the leachability of heavy metals (Cu 6.0 mg/kg, Zn 460.6 mg/kg) from biochar was still lower than that of swine manure (Cu 102.5 mg/kg and Zn 704.9 mg/kg), indicating the long-term stability of the heavy metals in the biochar. Pyrolysis dramatically lowered the environmental threat posed by endogenous heavy metals, demonstrating the applicability of swine manure-derived biochar compared to manure.
Collapse
Affiliation(s)
- Gabeen Lee
- Department of Environment and Energy & Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Department of Science and Environmental Studies, State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Se-Eun Jang
- Department of Environment and Energy & Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Won-Gune Jeong
- Department of Environment and Energy & Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong.
| | - Kitae Baek
- Department of Environment and Energy & Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
2
|
Wang F, Wang H, Dong W, Yu X, Zuo Z, Lu X, Zhao Z, Jiang J, Zhang X. Enhanced multi-metals stabilization: Synergistic insights from hydroxyapatite and peroxide dosing strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172159. [PMID: 38575032 DOI: 10.1016/j.scitotenv.2024.172159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/27/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Sediment contamination by heavy metals is a pressing environmental concern. While in situ metal stabilization techniques have shown promise, a great challenge remains in the simultaneous immobilization of multi-metals co-existing in contaminated sediments. This study aims to address this challenge by developing a practical method for stabilizing multi-metals by hydroxyapatite and calcium peroxide (HAP/CaO2) dosing strategies. Results showed that dosing 15.12 g of HAP/CaO2 at a ratio of 3:1 effectively transformed labile metals into stable fractions, reaching reaction kinetic equilibrium within one month with a pseudo-second-order kinetic (R2 > 0.98). The stable fractions of Nickel (Ni), Chromium (Cr), and lead (Pb) increased by approximately 16.9 %, 26.7 %, and 21.9 %, respectively, reducing heavy metal mobility and ensuring leachable concentrations complied with the stringent environmental Class I standard. Mechanistic analysis indicated that HAP played a crucial role in Pb stabilization, exhibiting a high rate of 0.0176 d-1, while Cr and Ni stabilization primarily occurred through the formation of hydroxide precipitates, as well as the slowly elevated pH (>8.5). Importantly, the proposed strategy poses a minimal environmental risk to benthic organisms exhibits almost negligible toxicity towards Vibrio fischeri and the Chironomus riparius, and saves about 71 % of costs compared to kaolinite. These advantages suggest the feasibility of HAP/CaO2 dosing strategies in multi-metal stabilization in contaminated sediments.
Collapse
Affiliation(s)
- Feng Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China; School of Economics and Management, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaohong Yu
- School of Economics and Management, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Zhiqiang Zuo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Xi Lu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China.
| | - Jiahong Jiang
- New York University, New York, NY 10012, United States
| | - Xiaoyu Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China
| |
Collapse
|
3
|
Zeng P, Liu J, Zhou H, Wang Y, Ni L, Liao Y, Gu J, Liao B, Li Q. Long-term effects of compound passivator coupled with silicon fertilizer on the reduction of cadmium and arsenic accumulation in rice and health risk evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171245. [PMID: 38408656 DOI: 10.1016/j.scitotenv.2024.171245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Cadmium (Cd) and arsenic (As) are precedence-controlled contaminants in paddy soils, that can easily accumulate in rice grains. Limestone and sepiolite (LS) compound passivator can obviously reduce Cd uptake in rice, whereas Si fertilizer can effectively decrease rice As uptake. Here, the synergistic effects of the LS compound passivator coupled with Si fertilizer (LSCS) on the soil pH and availability of Si, Cd, and As, as well as rice grain Cd and As accumulation and its health risk were studied based on a 3-year consecutive field experiment. The results showed that the LSCS performed the best in terms of synchronously decreasing soil Cd and As availability and rice Cd and As uptake. In the LSCS treatments, soil pH gradually decreased with the rice-planting season, while soil available Cd and As contents gradually increased, suggesting that the influence of LSCS on Cd and As availability gradually weakened with rice cultivation. Nonetheless, the contents of Cd and inorganic As (i-As) in rice grains treated with LSCS were slightly affected by cultivation but were significantly lower than the single treatments of LS compound passivator or Si fertilizer. According to the Cd and As limit standards in food (GB2762-2022), the Cd and i-As content in rice grains can be lowered below the standard by using the 4500 kg/hm2 LS compound passivator coupled with 90 kg/hm2 Si fertilizer in soil and spraying 0.4 g/L Si fertilizer on rice leaves for at least three years. Furthermore, health risk evaluation revealed that LSCS treatments significantly reduced the estimated daily intake, annual excess lifetime cancer risk, and hazard quotient of Cd and i-As in rice grains. These findings suggest that LSCS could be a viable approach for reducing Cd and As accumulation in rice grains and lowering the potential health risks associated with rice.
Collapse
Affiliation(s)
- Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering and Technology Research Center for Soil Pollution Remediation and Carbon Sequestration, Changsha 410004, China.
| | - Jiawei Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering and Technology Research Center for Soil Pollution Remediation and Carbon Sequestration, Changsha 410004, China.
| | - Yun Wang
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, China
| | - Li Ni
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ye Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiaofeng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering and Technology Research Center for Soil Pollution Remediation and Carbon Sequestration, Changsha 410004, China; Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha 410100, China
| | - Bohan Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering and Technology Research Center for Soil Pollution Remediation and Carbon Sequestration, Changsha 410004, China
| | - Qian Li
- Hunan Research Institute for Nonferrous Metals Co., Ltd., Changsha 410100, China
| |
Collapse
|
4
|
Zhang D, Lin J, Luo J, Sun S, Zhang X, Ma R, Peng J, Ji F, Zheng S, Tian Z, Ma N. Rapid immobilization of arsenic in contaminated soils by microwave irradiation combined with magnetic biochar: Microwave-induced electron transfer for oxidation and immobilization of arsenic (III). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170916. [PMID: 38350563 DOI: 10.1016/j.scitotenv.2024.170916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Biochar with adjustable redox activity is an effective strategy for immobilization of excess arsenic (As(III)) contaminated soil. However, biochar exhibits limitations in terms of electron transfer efficiency and immobilization efficiency due to insufficient activation energy. In this study, As(III) in the soil was rapidly immobilized by adding magnetic biochar (Fe-BC) and introducing microwave irradiation energy to enhance electron transport efficiency. The results showed that the pore structure and iron species (ZVI, Fe3O4) loaded onto the biochar could be modulated by controlling the temperature and time of microwave pyrolysis, which enhanced the microwave absorption capacity and the immobilization performance of As. After adding Fe-BC (10 wt%) and treating with microwave irradiation for 3 h, the content of As(III) in the soil was reduced to 54.56 %. Compared with the conventional heating treatment, the percentage of stabilized As (residual form) increased by 11.21 %. The localized hot spots formed through the absorption of microwave energy by biochar promote the formation of arsenic-containing mineral crystals (FeAsO4 and Fe3AsO7), thus enhancing the immobilization efficiency. In addition, microwave-induced electron transfer facilitated the oxidation of As(III) to As(V) by surface quinone and carbonyl groups on the Fe-BC. Density functional theory calculation further proved that the surface groups of the Fe-BC had a stronger electron-withdrawing ability under microwave irradiation, thereby promoting the adsorption and immobilization of As(III). This work provided a new perspective on the technology of rapid remediation of heavy metals contaminated soil using biochar.
Collapse
Affiliation(s)
- Dengcai Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junhao Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi Zhang
- Institute of Nano Science and Engineering, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Juan Peng
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen 518010, China
| | - Fei Ji
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen 518010, China
| | - Shuaifei Zheng
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen 518010, China
| | - Zhen Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Ma
- China Electronic System Engineering Co. LTD, Beijing 100040, China
| |
Collapse
|
5
|
Islam MS, Zhu J, Xiao L, Khan ZH, Saqib HSA, Gao M, Song Z. Enhancing rice quality and productivity: Multifunctional biochar for arsenic, cadmium, and bacterial control in paddy soil. CHEMOSPHERE 2023; 342:140157. [PMID: 37716553 DOI: 10.1016/j.chemosphere.2023.140157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
The perilousness of arsenic and cadmium (As-Cd) toxicity in water and soil presents a substantial hazard to the ecosystem and human well-being. Additionally, this metal (loids) (MLs) can have a deleterious effect on rice quality and yield, owing to the existence of toxic stress. In response to the pressing concern of reducing the MLs accumulation in rice grain, this study has prepared magnesium-manganese-modified corn-stover biochar (MMCB), magnesium-manganese-modified eggshell char (MMEB), and a combination of both (MMCEB). To test the effectiveness of these amendments, several pot trials were conducted, utilizing 1% and 2% application rates. The research discovered that the MMEB followed by MMCEB treatment at a 2% rate yielded the most significant paddy and rice quality, compared to the untreated control (CON) and MMCB. MMEB and MMCEB also extensively decreased the MLs content in the grain than CON, thereby demonstrating the potential to enrich food security and human healthiness. In addition, MMEB and MMCEB augmented the microbial community configuration in the paddy soil, including As-Cd detoxifying bacteria, and decreased bioavailable form of the MLs in the soil compared to the CON. The amendments also augmented Fe/Mn-plaque which captured a considerable quantity of As-Cd in comparison to the CON. In conclusion, the utilization of multifunctional biochar, such as MMEB and MMCEB, is an encouraging approach to diminish MLs aggregation in rice grain and increase rice yield for the reparation of paddy soils via transforming microbiota especially enhancing As-Cd detoxifying taxa, thereby improving agroecology, food security, and human and animal health.
Collapse
Affiliation(s)
- Md Shafiqul Islam
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China
| | - Junhua Zhu
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China
| | - Ling Xiao
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China
| | - Zulqarnain Haider Khan
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Minling Gao
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China.
| | - Zhengguo Song
- Department of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
6
|
Bao H, Wang J, Chen Z, Wen Q, Wu Y, Fu Q. Simultaneous passivation of heavy metals and removal of antibiotic resistance genes by calcium peroxide addition during sewage sludge composting. BIORESOURCE TECHNOLOGY 2023:129267. [PMID: 37271461 DOI: 10.1016/j.biortech.2023.129267] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
This research evaluated the effects of calcium peroxide (CP) at 0% (CK, w/w), 5% (T1, w/w), and 10% (T2, w/w), on heavy metals (HMs) mobility and prevalence of antibiotic resistance genes (ARGs) during sludge composting. T1 and T2 significantly reduced (p < 0.05) the mobility of Cu (29.34%, and 32.94%, respectively), Ni (24.07%, and 31.48%, respectively) and Zn (33.28%, and 54.11%, respectively) compared to CK after the composting. CP addition resulted in a decrease in mobile genetic elements (MGEs) and ARGs during composting. Together with structural equation model and random forest analysis depicted MGEs had a primary association with total ARGs variations during composting. Microbial analysis indicated CP downregulated the expression of the genes associated with two-component and type IV secretion system, thus reducing the prevalence of ARGs. This study demonstrates that application of CP is a feasible strategy to mitigate both ARGs and HMs hazards during composting.
Collapse
Affiliation(s)
- Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiuhua Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yiqi Wu
- Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, PR China
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|