1
|
Li Z, Wang X, Peng F, Chen N, Fang G. Organic radicals driving polycyclic aromatic hydrocarbon polymerization with peracetic acid activation in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134839. [PMID: 38878430 DOI: 10.1016/j.jhazmat.2024.134839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
The use of peracetic acid (PAA) in advanced oxidation processes has gained significant attention recently, but the knowledge of activating PAA to degrade polycyclic aromatic hydrocarbons (PAHs) is limited due to the variety and selectivity of reactive substances in PAA oxidation system. This paper presented the first systemically study on the degradation of PAHs by PAA activation in soil. It was found that heat-activated peracetic acid (heat/PAA) was capable of degrading phenanthrene (PHE) efficiently with degradation efficiency > 90 % within 30 min. Experimental results demonstrated that a series of reactive oxygen species (ROS) including organic radicals (RO•), hydroxyl radicals (HO•) and singlet oxygen (1O2) were generated, while acetylperoxyl (CH3C(O)OO•) and acetyloxyl (CH3C(O)O•) radicals were primarily responsible for PHE degradation in soil. Further analysis shows that polymerization products such as diphenic acid, 2'-formyl-2-biphenylcarboxylic acid and other macromolecules were dominant products of PHE degradation, suggesting polymerization driving PHE degradation instead of the conventional mineralization process. Toxicity analysis shows that most of the polymerization products had less toxicity than that of PHE. These results indicate that PAA activation was a highly effective remediation method for PAHs contaminated soil, which also provided a novel mechanism for pollutant degradation with the PAA activation process for environmental remediation.
Collapse
Affiliation(s)
- Ziyue Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaolei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Fei Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ning Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guodong Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
2
|
Wang Y, Tian H, Zhang C, Xu J, Liu X, Ma F, Wei X, Sun Y. Degradation and mechanism of PAHs by Fe-based activated persulfate: Effect of temperature and noble metal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172768. [PMID: 38670359 DOI: 10.1016/j.scitotenv.2024.172768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The accumulation of contaminants like PAHs in soil due to industrialization, urbanization, and intensified agriculture poses environmental challenges, owing to their persistence, hydrophobic nature, and toxicity. Thus, the degradation of PAHs has attracted worldwide attention in soil remediation. This study explored the effect of noble metal and temperature on the degradation of various polycyclic aromatic hydrocarbons (PAHs) in soil, as well as the types of reactive radicals generated and mechanism. The Fe-Pd/AC and Fe-Pt/AC activated persulfate exhibited high removal efficiency of 19 kinds of PAHs, about 79.95 % and 83.36 %, respectively. Fe-Pt/AC-activated persulfate exhibits superior degradation efficiency than that on Fe-Pd/AC-activated persulfate, due to the higher specific surface area and dispersity of Pt particles, thereby resulting in increased reactive radicals (·OH, SO4-· and ·OOH). Additionally, thermal activation enhances the degradation of PAHs, with initial efficiencies of 64.20 % and 55.49 % on Fe-Pd/AC- and Fe-Pt/AC-activated persulfate systems respectively, increasing to 76.05 % and 73.14 % with elevated temperatures from 21.5 to 50 °C. Metal and thermal activation facilitate S2O82- activation, generating reactive radicals, crucial for the degradation of PAHs via ring opening and oxygen hydrogenation reactions, yielding low-ring oxygen-containing derivatives such as organic acids, keto compounds, ethers, and esters. Furthermore, understanding the impact of parameters such as activation temperature and the types of noble metals on the degradation of PAHs within the activated persulfate system provides a theoretical foundation for the remediation of PAH-contaminated soil.
Collapse
Affiliation(s)
- Ye Wang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Huifang Tian
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Congcong Zhang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Jingyu Xu
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xingshuang Liu
- College of Environment and Ecology, Hainan University, Haikou 570228, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinqing Wei
- Tianjin JC Environmental Services, Tianjin 300202, China
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China; Research Center for Advanced Energy and Carbon Neutrality, Beihang University, Beijing 100191, China; College of Environment and Ecology, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Li C, Yin S, Yan Y, Liang C, Ma Q, Guo R, Zhang Y, Deng J, Sun Z. Efficient benzo(a)pyrene degradation by coal gangue-based catalytic material for peroxymonosulfate activation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119645. [PMID: 38048711 DOI: 10.1016/j.jenvman.2023.119645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
A low cost and green peroxymonosulfate (PMS) activation catalyst (CG-Ca-N) was successfully prepared with coal gangue (CG), calcium chloride, and melamine as activator. Under the optimal conditions, the CG-Ca-N can remove 100 % for benzo(a)pyrene (Bap) in an aqueous solution after 20 min and 72.06 % in soil slurry medium within 60 min, which also display excellent reuse ability toward Bap after three times. The removal of Bap is significantly decreased when the initial pH value was greater than 9 and obviously inhibited in the presence of HCO3- or SO42-. The characterization results indicated that the addition of calcium chloride could stabilize and increase the content of pyridinic N during thermal annealing, resulting in the production of •OH, SO4•- and 1O2. Based on electron paramagnetic resonance (EPR) and active radical scavenging experiments, 1O2 could be identified to be the dominant role in Bap degradation. Overall, this work opened a new perspective for the low cost and green PMS catalysts and offered great promise in the practical remediation of organic pollution of groundwater and soil.
Collapse
Affiliation(s)
- Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Shuaijun Yin
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Yutong Yan
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Chao Liang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Qingshui Ma
- Inner Mongolia Mengtai Buliangou Coal Industry Co., Ltd, Ordos, 010399, PR China
| | - Rui Guo
- Inner Mongolia Mengtai Buliangou Coal Industry Co., Ltd, Ordos, 010399, PR China
| | - Yubo Zhang
- Huadian Coal Industry Group Digital Intelligence Technology Co., Ltd, Beijing, 102400, PR China
| | - Jiushuai Deng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
4
|
Sprocati R, Gallo A, Wienkenjohann H, Rolle M. Temperature-dependent dynamics of electrokinetic conservative and reactive transport in porous media: A model-based analysis. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104261. [PMID: 37925812 DOI: 10.1016/j.jconhyd.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Electrokinetic techniques employ direct current electric fields to enhance the transport of amendments in low permeability porous media and have been demonstrated effective for in situ remediation of both organic contaminants and heavy metals. The application of electric potential gradients give rise to coupled chemical, hydraulic and electric fluxes, which are at the basis of the main transport mechanisms: electromigration and electroosmosis. Previous research has highlighted the significant impacts of charge interactions and fluid composition, including temperature-dependent properties such as electrolyte conductivity and density, on these transport phenomena. However, current models of electrokinetic applications often assume isothermal conditions and overlook the production of heat resulting from Joule heating. This study provides a detailed model-based investigation, systematically exploring the effects of temperature on electrokinetic conservative and reactive transport in porous media. By incorporating temperature-dependent material properties and progressively investigating the impact of temperature on each transport mechanism, we analyze the effects of temperature variations in both 1D and 2D systems. The study reveals how temperature dynamically influences the physical, chemical and electrostatic processes controlling electrokinetic transport. A temperature increase results in a higher speed of amendments delivery by both electromigration and electroosmosis and increases the kinetics of degradation reactions. The simulations also reveal a feedback mechanism in which higher aqueous conductivity results in increased Joule heating, leading to a faster temperature rise and, subsequently, to higher electrolyte conductivity. Finally, we estimate the electric energy requirements of the system at varying temperatures and show how these changes impact the rate of contaminant removal.
Collapse
Affiliation(s)
- Riccardo Sprocati
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Andrea Gallo
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Henning Wienkenjohann
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Massimo Rolle
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark; Technical University of Darmstadt, Department of Materials and Geosciences, Institute of Applied Geosciences, Schnittspahnstr. 9, 64287 Darmstadt, Germany.
| |
Collapse
|