1
|
Gu Y, Gu B, Sun S, Yong H, Chernyak VY, Mukamel S. Manipulating Attosecond Charge Migration in Molecules by Optical Cavities. J Am Chem Soc 2023. [PMID: 37390450 DOI: 10.1021/jacs.3c03821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The ultrafast electronic charge dynamics in molecules upon photoionization while the nuclear motions are frozen is known as charge migration. In a theoretical study of the quantum dynamics of photoionized 5-bromo-1-pentene, we show that the charge migration process can be induced and enhanced by placing the molecule in an optical cavity, and can be monitored by time-resolved photoelectron spectroscopy. The collective nature of the polaritonic charge migration process is investigated. We find that, unlike spectroscopy, molecular charge dynamics in a cavity is local and does not show many-molecule collective effects. The same conclusion applies to cavity polaritonic chemistry.
Collapse
Affiliation(s)
| | - Bing Gu
- Department of Chemistry, Westlake University, Hangzhou 310030, Zhejiang, China
| | | | | | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Mathematics, Wayne State University, Detroit, Michigan 48202, United States
| | | |
Collapse
|
2
|
Folorunso AS, Mauger F, Hamer KA, Jayasinghe DD, Wahyutama IS, Ragains JR, Jones RR, DiMauro LF, Gaarde MB, Schafer KJ, Lopata K. Attochemistry Regulation of Charge Migration. J Phys Chem A 2023; 127:1894-1900. [PMID: 36791088 PMCID: PMC9986869 DOI: 10.1021/acs.jpca.3c00568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Charge migration (CM) is a coherent attosecond process that involves the movement of localized holes across a molecule. To determine the relationship between a molecule's structure and the CM dynamics it exhibits, we perform systematic studies of para-functionalized bromobenzene molecules (X-C6H4-R) using real-time time-dependent density functional theory. We initiate valence-electron dynamics by emulating rapid strong-field ionization leading to a localized hole on the bromine atom. The resulting CM, which takes on the order of 1 fs, occurs via an X localized → C6H4 delocalized → R localized mechanism. Interestingly, the hole contrast on the acceptor functional group increases with increasing electron-donating strength. This trend is well-described by the Hammett σ value of the group, which is a commonly used metric for quantifying the effect of functionalization on the chemical reactivity of benzene derivatives. These results suggest that simple attochemistry principles and a density-based picture can be used to predict and understand CM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert R Jones
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | |
Collapse
|
3
|
Filming movies of attosecond charge migration in single molecules with high harmonic spectroscopy. Nat Commun 2022; 13:4595. [PMID: 35933558 PMCID: PMC9357086 DOI: 10.1038/s41467-022-32313-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Electron migration in molecules is the progenitor of chemical reactions and biological functions after light-matter interaction. Following this ultrafast dynamics, however, has been an enduring endeavor. Here we demonstrate that, by using machine learning algorithm to analyze high-order harmonics generated by two-color laser pulses, we are able to retrieve the complex amplitudes and phases of harmonics of single fixed-in-space molecules. These complex dipoles enable us to construct movies of laser-driven electron migration after tunnel ionization of N2 and CO2 molecules at time steps of 50 attoseconds. Moreover, the angular dependence of the migration dynamics is fully resolved. By examining the movies, we observe that electron holes do not just migrate along the laser polarization direction, but may swirl around the atom centers. Our result establishes a general scheme for studying ultrafast electron dynamics in molecules, paving a way for further advance in tracing and controlling photochemical reactions by femtosecond lasers.
Collapse
|
4
|
Khalili F, Vafaee M, Shokri B. Attosecond charge migration following oxygen K-shell ionization in DNA bases and base pairs. Phys Chem Chem Phys 2021; 23:23005-23013. [PMID: 34611693 DOI: 10.1039/d1cp02920g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Core ionization of DNA begins a cascade of events which could lead to cellular inactivation or death. The created core-hole following an impulse inner-shell ionization of molecules naturally decays in the auger timescale. We simulated charge migration (CM) phenomena following an impulsive core ionization of individual DNA bases at the oxygen K-edge which occurs before Auger decay of the oxygen. Our approach is based on real-time time dependent density functional theory (RT-TDDFT). It is shown that the pronounced hole fluctuation observed around bonds of the initial core-hole results in various valence orbital migrations. Also, the same photo-core-ionized dynamics is studied for the related base pairs. We investigate the role of base pairing and H-bonding interactions in the attosecond CM dynamics. In particular, the creation of a core-hole in the oxygen involved in H-bonding leads to an enhancement of charge migration relative to the respective single bases. Importantly, the hole oscillation of the adenine-thymine base pair upon creation of a core-hole at the oxygen, which does not contribute to the donor-acceptor interactions (not H-bonded), decreases compared to the single thymine base. Understanding the detailed dynamics of the localized core-hole initiating CM process would open the way for chemically controlling DNA damage/repair in the future.
Collapse
Affiliation(s)
- Fatemeh Khalili
- Department of Physics, Shahid Beheshti University, Velenjak, Tehran 19839, Iran.
| | - Mohsen Vafaee
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran.
| | - Babak Shokri
- Department of Physics, Shahid Beheshti University, Velenjak, Tehran 19839, Iran. .,Laser-Plasma Research Institute, Shahid Beheshti University, Velenjak, Tehran 19839, Iran
| |
Collapse
|
5
|
Ruberti M. Quantum electronic coherences by attosecond transient absorption spectroscopy: ab initio B-spline RCS-ADC study. Faraday Discuss 2021; 228:286-311. [PMID: 33575690 DOI: 10.1039/d0fd00104j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here I present a fully ab initio time-resolved study of X-ray attosecond transient absorption spectroscopy (ATAS) in a prototypical polyatomic molecule, pyrazine, and demonstrate the possibility of retrieving the many-electron quantum ionic coherences arising in attosecond molecular photoionisation and pre-determining the subsequent charge-directed photochemical reactivity. Advanced first-principles many-electron simulations are performed, within a hybrid XUV pump/X-ray probe setup, to describe the interaction of pyrazine with both XUV pump and X-ray probe pulses, and study the triggered correlated many-electron dynamics. The calculations are carried out by means of the recently-developed ab initio method for many-electron dynamics in polyatomic molecules, the time-dependent (TD) B-spline Restricted Correlation Space-Algebraic Diagrammatic Construction (RCS-ADC). RCS-ADC simulates molecular ionisation from first principles, combining the accurate description of electron correlation of quantum chemistry with the full account of the continuum dynamics of the photoelectron. Complete theoretical characterisation of the atto-ionised many-electron state and photo-induced attosecond charge dynamics is achieved by calculating the reduced ionic density matrix (R-IDM) of the bipartite ion-photoelectron system, with full inclusion of the correlated shakeup states. Deviations from the sudden approximation picture of photoionisation, in the low-photon-energy limit, are presented. The effect of the multi-channel interaction between the parent-ion and the emitted photoelectron on the onset of the quantum electronic coherences is analysed. Moreover, I show how the Schmidt decomposition of the R-IDM unravels the many-electron dynamics triggered by the pump, allowing for the identification of the key channels involved. Finally, I calculate the X-ray attosecond transient absorption spectra of XUV-ionised pyrazine. The results unveil the mapping of the ATAS measurement onto the quantum electronic coherences, and related non-zero R-IDM matrix elements, produced upon ionisation by the XUV pump laser pulse.
Collapse
Affiliation(s)
- M Ruberti
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| |
Collapse
|
6
|
Moreno Carrascosa A, Yang M, Yong H, Ma L, Kirrander A, Weber PM, Lopata K. Mapping static core-holes and ring-currents with X-ray scattering. Faraday Discuss 2021; 228:60-81. [PMID: 33605956 DOI: 10.1039/d0fd00124d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measuring the attosecond movement of electrons in molecules is challenging due to the high temporal and spatial resolutions required. X-ray scattering-based methods are promising, but many questions remain concerning the sensitivity of the scattering signals to changes in density, as well as the means of reconstructing the dynamics from these signals. In this paper, we present simulations of stationary core-holes and electron dynamics following inner-shell ionization of the oxazole molecule. Using a combination of time-dependent density functional theory simulations along with X-ray scattering theory, we demonstrate that the sudden core-hole ionization produces a significant change in the X-ray scattering response and how the electron currents across the molecule should manifest as measurable modulations to the time dependent X-ray scattering signal. This suggests that X-ray scattering is a viable probe for measuring electronic processes at time scales faster than nuclear motion.
Collapse
Affiliation(s)
| | - Mengqi Yang
- Department of Chemistry, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA
| | - Haiwang Yong
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Lingyu Ma
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Adam Kirrander
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - Peter M Weber
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Kenneth Lopata
- Department of Chemistry, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA and Center for Computation and Technology, Louisiana State University, Baton Roug, Louisiana 70803, USA.
| |
Collapse
|
7
|
Ivanov M. Concluding remarks: The age of molecular movies. Faraday Discuss 2021; 228:622-629. [PMID: 33960352 DOI: 10.1039/d1fd90033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Faraday Discussion has demonstrated enormous progress towards using advanced light sources, together with a variety of experimental and theoretical tools and techniques, to film the motion of both electrons and nuclei in molecules undergoing photo-induced reactions. The new tools are beginning to offer reliable opportunities for achieving the required spatio-temporal resolution, all the way to sub-femtosecond and sub-angstrom scales. The age of quantum molecular movies has arrived.
Collapse
Affiliation(s)
- Misha Ivanov
- Max Born Institute, Max Born Str. 2A, Berlin, Germany
| |
Collapse
|
8
|
Månsson EP, Latini S, Covito F, Wanie V, Galli M, Perfetto E, Stefanucci G, Hübener H, De Giovannini U, Castrovilli MC, Trabattoni A, Frassetto F, Poletto L, Greenwood JB, Légaré F, Nisoli M, Rubio A, Calegari F. Real-time observation of a correlation-driven sub 3 fs charge migration in ionised adenine. Commun Chem 2021; 4:73. [PMID: 36697766 PMCID: PMC9814501 DOI: 10.1038/s42004-021-00510-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 01/28/2023] Open
Abstract
Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly move along the molecular backbone. Capturing this few-femtosecond or attosecond charge redistribution would represent the real-time observation of electron correlation in a molecule with the enticing prospect of following the energy flow from a single excited electron to the other coupled electrons in the system. Here, we report a time-resolved study of the correlation-driven charge migration process occurring in the nucleic-acid base adenine after ionisation with a 15-35 eV attosecond pulse. We find that the production of intact doubly charged adenine - via a shortly-delayed laser-induced second ionisation event - represents the signature of a charge inflation mechanism resulting from many-body excitation. This conclusion is supported by first-principles time-dependent simulations. These findings may contribute to the control of molecular reactivity at the electronic, few-femtosecond time scale.
Collapse
Affiliation(s)
- Erik P. Månsson
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy
| | - Simone Latini
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany
| | - Fabio Covito
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany
| | - Vincent Wanie
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy ,INRS-EMT, Varennes, QC Canada
| | - Mara Galli
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.4643.50000 0004 1937 0327Department of Physics, Politecnico di Milano, Milano, Italy
| | - Enrico Perfetto
- grid.472712.5CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Monterotondo Scalo, Italy ,grid.6530.00000 0001 2300 0941Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
| | - Gianluca Stefanucci
- grid.6530.00000 0001 2300 0941Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy ,grid.470219.9INFN, Sezione di Roma Tor Vergata, Roma, Italy
| | - Hannes Hübener
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany
| | - Umberto De Giovannini
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany ,grid.10776.370000 0004 1762 5517Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Palermo, Italy
| | - Mattea C. Castrovilli
- Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy ,Institute for the Structure of Matter CNR-ISM, Monterotondo Scalo, Italy
| | - Andrea Trabattoni
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Fabio Frassetto
- Institute for Photonics and Nanotechnologies CNR-IFN, Padova, Italy
| | - Luca Poletto
- Institute for Photonics and Nanotechnologies CNR-IFN, Padova, Italy
| | - Jason B. Greenwood
- grid.4777.30000 0004 0374 7521Centre for Plasma Physics, School of Maths and Physics, Queen’s University Belfast, Belfast, UK
| | | | - Mauro Nisoli
- Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy ,grid.4643.50000 0004 1937 0327Department of Physics, Politecnico di Milano, Milano, Italy
| | - Angel Rubio
- grid.469852.40000 0004 1796 3508Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany ,Center for Computational Quantum Physics (CCQ), The Flatiron Institute, New York, NY USA
| | - Francesca Calegari
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,Institute for Photonics and Nanotechnologies CNR-IFN, Milano, Italy ,grid.9026.d0000 0001 2287 2617Institut fur Experimentalphysik, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Folorunso AS, Bruner A, Mauger F, Hamer KA, Hernandez S, Jones RR, DiMauro LF, Gaarde MB, Schafer KJ, Lopata K. Molecular Modes of Attosecond Charge Migration. PHYSICAL REVIEW LETTERS 2021; 126:133002. [PMID: 33861123 DOI: 10.1103/physrevlett.126.133002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
First-principles calculations are employed to elucidate the modes of attosecond charge migration (CM) in halogenated hydrocarbon chains. We use constrained density functional theory (DFT) to emulate the creation of a localized hole on the halogen and follow the subsequent dynamics via time-dependent DFT. We find low-frequency CM modes (∼1 eV) that propagate across the molecule and study their dependence on length, bond order, and halogenation. We observe that the CM speed (∼4 Å/fs) is largely independent of molecule length, but is lower for triple-bonded versus double-bonded molecules. Additionally, as the halogen mass increases, the hole travels in a more particlelike manner as it moves across the molecule. These heuristics will be useful in identifying molecules and optimal CM detection methods for future experiments, especially for halogenated hydrocarbons which are promising targets for ionization-triggered CM.
Collapse
Affiliation(s)
- Aderonke S Folorunso
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Adam Bruner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - François Mauger
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kyle A Hamer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Samuel Hernandez
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Robert R Jones
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mette B Gaarde
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kenneth J Schafer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
10
|
Li J, Lu J, Chew A, Han S, Li J, Wu Y, Wang H, Ghimire S, Chang Z. Attosecond science based on high harmonic generation from gases and solids. Nat Commun 2020; 11:2748. [PMID: 32488005 PMCID: PMC7265550 DOI: 10.1038/s41467-020-16480-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/05/2020] [Indexed: 11/11/2022] Open
Abstract
Recent progress in high power ultrafast short-wave and mid-wave infrared lasers has enabled gas-phase high harmonic generation (HHG) in the water window and beyond, as well as the demonstration of HHG in condensed matter. In this Perspective, we discuss the recent advancements and future trends in generating and characterizing soft X-ray pulses from gas-phase HHG and extreme ultraviolet (XUV) pulses from solid-state HHG. Then, we discuss their current and potential usage in time-resolved study of electron and nuclear dynamics in atomic, molecular and condensed matters. Different methods are demonstrated in recent years to produce attosecond pulses. Here, the authors discuss recent development and future prospects of the generation of such pulses from gases and solids and their potential applications in spectroscopy and ultrafast dynamics in atoms, molecules and other complex systems.
Collapse
Affiliation(s)
- Jie Li
- Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing, 100094, China.,Institute for the Frontier of Attosecond Science and Technology, CREOL and Department of Physics, University of Central Florida, Orlando, FL, 32816, USA.,School of Optoelectronics, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Lu
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Andrew Chew
- Institute for the Frontier of Attosecond Science and Technology, CREOL and Department of Physics, University of Central Florida, Orlando, FL, 32816, USA
| | - Seunghwoi Han
- Institute for the Frontier of Attosecond Science and Technology, CREOL and Department of Physics, University of Central Florida, Orlando, FL, 32816, USA.,School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jialin Li
- Institute for the Frontier of Attosecond Science and Technology, CREOL and Department of Physics, University of Central Florida, Orlando, FL, 32816, USA
| | - Yi Wu
- Institute for the Frontier of Attosecond Science and Technology, CREOL and Department of Physics, University of Central Florida, Orlando, FL, 32816, USA
| | - He Wang
- Department of Physics, University of Miami, Coral Gables, FL, 33146, USA
| | - Shambhu Ghimire
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Zenghu Chang
- Institute for the Frontier of Attosecond Science and Technology, CREOL and Department of Physics, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
11
|
Palacios A, Martín F. The quantum chemistry of attosecond molecular science. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1430] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alicia Palacios
- Departamento de Química Universidad Autónoma de Madrid Madrid Spain
- Institute of Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Madrid Spain
| | - Fernando Martín
- Departamento de Química Universidad Autónoma de Madrid Madrid Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA‐Nano) Madrid Spain
- Condensed Matter Physics Center (IFIMAC) Universidad Autónoma de Madrid Madrid Spain
| |
Collapse
|
12
|
Jenkins AJ, Spinlove KE, Vacher M, Worth GA, Robb MA. The Ehrenfest method with fully quantum nuclear motion (Qu-Eh): Application to charge migration in radical cations. J Chem Phys 2018; 149:094108. [PMID: 30195291 DOI: 10.1063/1.5038428] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An algorithm is described for quantum dynamics where an Ehrenfest potential is combined with fully quantum nuclear motion (Quantum-Ehrenfest, Qu-Eh). The method is related to the single-set variational multi-configuration Gaussian approach (vMCG) but has the advantage that only a single quantum chemistry computation is required at each time step since there is only a single time-dependent potential surface. Also shown is the close relationship to the "exact factorization method." The quantum Ehrenfest method is compared with vMCG for study of electron dynamics in a modified bismethylene-adamantane cation system. Illustrative examples of electron-nuclear dynamics are presented for a distorted allene system and for HCCI+ where one has a degenerate Π system.
Collapse
Affiliation(s)
- Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - K Eryn Spinlove
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Morgane Vacher
- Department of Chemistry-Ångström, Uppsala University, Lägerhyddsvägen 1, 751 21 Uppsala, Sweden
| | - Graham A Worth
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Michael A Robb
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
13
|
Kraus PM, Zürch M, Cushing SK, Neumark DM, Leone SR. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0008-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Kraus PM, Wörner HJ. Perspektiven für das Verständnis fundamentaler Elektronenkorrelationen durch Attosekundenspektroskopie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201702759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter M. Kraus
- Department of Chemistry; University of California; Berkeley California 94720 USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| |
Collapse
|
15
|
Kraus PM, Wörner HJ. Perspectives of Attosecond Spectroscopy for the Understanding of Fundamental Electron Correlations. Angew Chem Int Ed Engl 2018; 57:5228-5247. [DOI: 10.1002/anie.201702759] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/29/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Peter M. Kraus
- Department of Chemistry; University of California; Berkeley California 94720 USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
16
|
Attosecond angular flux of partial charges on the carbon atoms of benzene in non-aromatic excited state. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
van den Wildenberg S, Mignolet B, Levine RD, Remacle F. Pumping and probing vibrational modulated coupled electronic coherence in HCN using short UV fs laser pulses: a 2D quantum nuclear dynamical study. Phys Chem Chem Phys 2017; 19:19837-19846. [PMID: 28726858 DOI: 10.1039/c7cp02048a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coupled electronic-nuclear coherent dynamics induced by a short strong VUV fs pulse in the low excited electronic states of HCN is probed by transient absorption spectroscopy with a second weaker fs UV pulse. The nuclear time-dependent Schrodinger equation is solved on a 2D nuclear grid with several electronic states with a Hamiltonian including the dipole coupling to the pump and the probe electric fields. The two internal nuclear coordinates describe the motion of the light H atom. There is a band of several excited electronic states at about 8 eV above the ground state (GS) that is transiently accessed by the pump pulse. We tailored the pump so as to selectively populate the lowest 1A'' electronic state thereby the pulse creates an electronic coherence with the GS. Our simulations show that this electronic coherence is modulated by the nuclear motion and persists all the way to dissociation on the 1A'' state. Transient absorption spectra computed as a function of the delay time between the pump and the probe pulses provide a detailed probe of the electronic amplitude and its phase, as well as of the modulation of the electronic coherence by the nuclear motion, both bound and dissociative.
Collapse
|
18
|
Diestler DJ, Hermann G, Manz J. Charge Migration in Eyring, Walter and Kimball’s 1944 Model of the Electronically Excited Hydrogen-Molecule Ion. J Phys Chem A 2017. [DOI: 10.1021/acs.jpca.7b04714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dennis J. Diestler
- University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gunter Hermann
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jörn Manz
- State
Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
19
|
Nisoli M, Decleva P, Calegari F, Palacios A, Martín F. Attosecond Electron Dynamics in Molecules. Chem Rev 2017; 117:10760-10825. [DOI: 10.1021/acs.chemrev.6b00453] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mauro Nisoli
- Department
of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM- CNR, 34127 Trieste, Italy
| | - Francesca Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Alicia Palacios
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
20
|
Ding H, Jia D, Manz J, Yang Y. Reconstruction of the electronic flux during adiabatic attosecond charge migration in HCCI+. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1287967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hao Ding
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| |
Collapse
|
21
|
Sun S, Mignolet B, Fan L, Li W, Levine RD, Remacle F. Nuclear Motion Driven Ultrafast Photodissociative Charge Transfer of the PENNA Cation: An Experimental and Computational Study. J Phys Chem A 2017; 121:1442-1447. [PMID: 28135094 DOI: 10.1021/acs.jpca.6b12310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultrafast nuclear driven charge transfer prior to dissociation is an important process in modular systems as was demonstrated experimentally in the bifunctional molecule 2-phenylethyl-N,N-dimethylamine (PENNA) in work by Lehr et al. ( J. Phys. Chem. A 2005 , 109 , 8074 ). The ultrafast dynamics of PENNA photoexcited to the three lowest electronic states of the cation (D0, D1, and D2) was studied using quantum chemistry and surface hoping. We show that a conical intersection, localized in the Franck-Condon region, between the D0 and the D1 states, leads to an ultrafast charge transfer, computed here to be on a time scale of 65 fs, between the phenyl and the amine charged subunits. On the D0 ground state, the dissociation proceeds on the 60 ps time scale through a 19 kcal/mol late barrier. The computed kinetic energy release is in good agreement with a new experimental measurement of PENNA ionization by an 800 nm 30 fs intense laser pulse.
Collapse
Affiliation(s)
- Shoutian Sun
- Department of Chemistry, B6c, University of Liege , B4000 Liege, Belgium
| | - Benoit Mignolet
- Department of Chemistry, B6c, University of Liege , B4000 Liege, Belgium
| | - Lin Fan
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Wen Li
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Raphael D Levine
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, and Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States.,The Fritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Francoise Remacle
- Department of Chemistry, B6c, University of Liege , B4000 Liege, Belgium
| |
Collapse
|
22
|
Jia D, Manz J, Paulus B, Pohl V, Tremblay JC, Yang Y. Quantum control of electronic fluxes during adiabatic attosecond charge migration in degenerate superposition states of benzene. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Using quantum dynamics simulations to follow the competition between charge migration and charge transfer in polyatomic molecules. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Charalambidis D, Chikán V, Cormier E, Dombi P, Fülöp JA, Janáky C, Kahaly S, Kalashnikov M, Kamperidis C, Kühn S, Lepine F, L’Huillier A, Lopez-Martens R, Mondal S, Osvay K, Óvári L, Rudawski P, Sansone G, Tzallas P, Várallyay Z, Varjú K. The Extreme Light Infrastructure—Attosecond Light Pulse Source (ELI-ALPS) Project. SPRINGER SERIES IN CHEMICAL PHYSICS 2017. [DOI: 10.1007/978-3-319-64840-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Chandra S, Bhattacharya A. Attochemistry of Ionized Halogen, Chalcogen, Pnicogen, and Tetrel Noncovalent Bonded Clusters. J Phys Chem A 2016; 120:10057-10071. [DOI: 10.1021/acs.jpca.6b09813] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sankhabrata Chandra
- Department of Inorganic and
Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India 560012
| | - Atanu Bhattacharya
- Department of Inorganic and
Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India 560012
| |
Collapse
|
26
|
Kuleff AI, Kryzhevoi NV, Pernpointner M, Cederbaum LS. Core Ionization Initiates Subfemtosecond Charge Migration in the Valence Shell of Molecules. PHYSICAL REVIEW LETTERS 2016; 117:093002. [PMID: 27610850 DOI: 10.1103/physrevlett.117.093002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 05/23/2023]
Abstract
After the ionization of a valence electron, the created hole can migrate ultrafast from one end of the molecule to another. Because of the advent of attosecond pulse techniques, the measuring and understanding of charge migration has become a central topic in attosecond science. Here, we pose the hitherto unconsidered question whether ionizing a core electron will also lead to charge migration. It is found that the created hole in the core stays put, but in response to this hole interesting electron dynamics takes place which can lead to intense charge migration in the valence shell. This migration is typically faster than that after the ionization of a valence electron and transpires on a shorter time scale than the natural decay of the core hole by the Auger process, making the subject very challenging to attosecond science.
Collapse
Affiliation(s)
- Alexander I Kuleff
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Nikolai V Kryzhevoi
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Markus Pernpointner
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Lorenz S Cederbaum
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Ramasesha K, Leone SR, Neumark DM. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy. Annu Rev Phys Chem 2016; 67:41-63. [DOI: 10.1146/annurev-physchem-040215-112025] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Krupa Ramasesha
- Department of Chemistry, University of California, Berkeley, California 94720;
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550
| | - Stephen R. Leone
- Department of Chemistry, University of California, Berkeley, California 94720;
- Department of Physics, University of California, Berkeley, California 94720
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720;
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
28
|
Nikodem A, Levine RD, Remacle F. Quantum Nuclear Dynamics Pumped and Probed by Ultrafast Polarization Controlled Steering of a Coherent Electronic State in LiH. J Phys Chem A 2016; 120:3343-52. [PMID: 26928262 DOI: 10.1021/acs.jpca.6b00140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quantum wave packet dynamics following a coherent electronic excitation of LiH by an ultrashort, polarized, strong one-cycle infrared optical pulse is computed on several electronic states using a grid method. The coupling to the strong field of the pump and the probe pulses is included in the Hamiltonian used to solve the time-dependent Schrodinger equation. The polarization of the pump pulse allows us to control the localization in time and in space of the nonequilibrium coherent electronic motion and the subsequent nuclear dynamics. We show that transient absorption, resulting from the interaction of the total molecular dipole with the electric fields of the pump and the probe, is a very versatile probe of the different time scales of the vibronic dynamics. It allows probing both the ultrashort, femtosecond time scale of the electronic coherences as well as the longer dozens of femtoseconds time scales of the nuclear motion on the excited electronic states. The ultrafast beatings of the electronic coherences in space and in time are shown to be modulated by the different periods of the nuclear motion.
Collapse
Affiliation(s)
- Astrid Nikodem
- Département de Chimie, B6c, Université de Liège , B4000 Liège, Belgium
| | - R D Levine
- The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel.,Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine and Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - F Remacle
- Département de Chimie, B6c, Université de Liège , B4000 Liège, Belgium.,The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
29
|
Jenkins AJ, Vacher M, Bearpark MJ, Robb MA. Nuclear spatial delocalization silences electron density oscillations in 2-phenyl-ethyl-amine (PEA) and 2-phenylethyl-N,N-dimethylamine (PENNA) cations. J Chem Phys 2016; 144:104110. [DOI: 10.1063/1.4943273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew J. Jenkins
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Morgane Vacher
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael J. Bearpark
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael A. Robb
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
30
|
Schneider M, Soshnikov DY, Holland DMP, Powis I, Antonsson E, Patanen M, Nicolas C, Miron C, Wormit M, Dreuw A, Trofimov AB. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study. J Chem Phys 2015; 143:144103. [DOI: 10.1063/1.4931643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- M. Schneider
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
| | - D. Yu. Soshnikov
- Favorsky’s Institute of Chemistry, SB RAS, 664033 Irkutsk, Russia
- Laboratory of Quantum Chemistry, Irkutsk State University, 664003 Irkutsk, Russia
| | - D. M. P. Holland
- Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, United Kingdom
| | - I. Powis
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - E. Antonsson
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - M. Patanen
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - C. Nicolas
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - C. Miron
- Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - M. Wormit
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
| | - A. Dreuw
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
| | - A. B. Trofimov
- Favorsky’s Institute of Chemistry, SB RAS, 664033 Irkutsk, Russia
- Laboratory of Quantum Chemistry, Irkutsk State University, 664003 Irkutsk, Russia
| |
Collapse
|
31
|
Domingo A, Angeli C, de Graaf C, Robert V. Electronic reorganization triggered by electron transfer: The intervalence charge transfer of a Fe3+/Fe2+bimetallic complex. J Comput Chem 2015; 36:861-9. [DOI: 10.1002/jcc.23871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/17/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Alex Domingo
- Department of Chemistry; KU Leuven Celestijnenlaan 200F B-3001 Heverlee-Leuven Belgium
| | - Celestino Angeli
- Dipartimento di Scienze Chimiche e Farmaceutiche; Università di Ferrara; via Fossato di Mortara 17 44121 Ferrara Italy
| | - Coen de Graaf
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; Marcel lí Domingo s/n 43007 Tarragona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Vincent Robert
- Laboratoire de Chimie Quantique; Institut de Chimie UMR 7177, Université de Strasbourg; 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
32
|
Despré V, Marciniak A, Loriot V, Galbraith MCE, Rouzée A, Vrakking MJJ, Lépine F, Kuleff AI. Attosecond Hole Migration in Benzene Molecules Surviving Nuclear Motion. J Phys Chem Lett 2015; 6:426-31. [PMID: 26261959 DOI: 10.1021/jz502493j] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Hole migration is a fascinating process driven by electron correlation, in which purely electronic dynamics occur on a very short time scale in complex ionized molecules, prior to the onset of nuclear motion. However, it is expected that due to coupling to the nuclear dynamics, these oscillations will be rapidly damped and smeared out, which makes experimental observation of the hole migration process rather difficult. In this Letter, we demonstrate that the instantaneous ionization of benzene molecules initiates an ultrafast hole migration characterized by a periodic breathing of the hole density between the carbon ring and surrounding hydrogen atoms on a subfemtosecond time scale. We show that these oscillations survive the dephasing introduced by the nuclear motion for a long enough time to allow their observation. We argue that this offers an ideal benchmark for studying the influence of hole migration on molecular reactivity.
Collapse
Affiliation(s)
- V Despré
- †Institut Lumière Matière, Université Lyon 1, CNRS, UMR 5306, 10 Rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - A Marciniak
- †Institut Lumière Matière, Université Lyon 1, CNRS, UMR 5306, 10 Rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - V Loriot
- †Institut Lumière Matière, Université Lyon 1, CNRS, UMR 5306, 10 Rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - M C E Galbraith
- ‡Max-Born-Institut, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - A Rouzée
- ‡Max-Born-Institut, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - M J J Vrakking
- ‡Max-Born-Institut, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - F Lépine
- †Institut Lumière Matière, Université Lyon 1, CNRS, UMR 5306, 10 Rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - A I Kuleff
- §Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Charge transfer dynamics from adsorbates to surfaces with single active electron and configuration interaction based approaches. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2014.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Vacher M, Bearpark MJ, Robb MA. Communication: Oscillating charge migration between lone pairs persists without significant interaction with nuclear motion in the glycine and Gly-Gly-NH-CH3 radical cations. J Chem Phys 2014; 140:201102. [DOI: 10.1063/1.4879516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
35
|
Kuś T, Mignolet B, Levine RD, Remacle F. Pump and Probe of Ultrafast Charge Reorganization in Small Peptides: A Computational Study through Sudden Ionizations. J Phys Chem A 2013; 117:10513-25. [DOI: 10.1021/jp407295t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- T. Kuś
- Department
of Chemistry, B6c, University of Liege, B4000 Liege, Belgium
| | - B. Mignolet
- Department
of Chemistry, B6c, University of Liege, B4000 Liege, Belgium
| | - R. D. Levine
- Fritz Haber Research
Centre for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - F. Remacle
- Department
of Chemistry, B6c, University of Liege, B4000 Liege, Belgium
- Fritz Haber Research
Centre for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
36
|
Duffy MJ, Kelly O, Calvert CR, King RB, Belshaw L, Kelly TJ, Costello JT, Timson DJ, Bryan WA, Kierspel T, Turcu ICE, Cacho CM, Springate E, Williams ID, Greenwood JB. Fragmentation of neutral amino acids and small peptides by intense, femtosecond laser pulses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1366-1375. [PMID: 23817831 DOI: 10.1007/s13361-013-0653-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.
Collapse
Affiliation(s)
- Martin J Duffy
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|