1
|
Cueto-Díaz EJ, Gálvez-Martínez S, Colin-García M, Mateo-Martí E. A New Approach in Prebiotic Chemistry Studies: Proline Sorption Triggered by Mineral Surfaces Analysed Using XPS. Life (Basel) 2023; 13:life13040908. [PMID: 37109437 PMCID: PMC10141706 DOI: 10.3390/life13040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
The role of minerals in the origin of life and prebiotic evolution remains unknown and controversial. Mineral surfaces have the potential to facilitate prebiotic polymerization due to their ability to adsorb and concentrate biomolecules that subsequently can catalyse reactions; however, the precise nature of the interaction between the mineral host and the guest biomolecule still needs to be understood. In this context, we spectroscopically characterized, using infrared, X-ray photoemission spectroscopy (XPS) and X-ray diffraction (XRD) techniques, the interaction between L-proline and montmorillonite, olivine, iron disulphide, and haematite (minerals of prebiotic interest), by evaluating their interaction from a liquid medium. This work provides insight into the chemical processes occurring between proline, the only cyclic amino acid, and this selection of minerals, each of them bearing a particular chemical and crystal structures. Proline was successfully adsorbed on montmorillonite, haematite, olivine, and iron disulphide in anionic and zwitterionic chemical forms, being the predominant form directly related to the mineral structure and composition. Silicates (montmorillonite) dominate adsorption, whereas iron oxides (haematite) show the lowest molecular affinity. This approach will help to understand structure-affinity relationship between the mineral surfaces and proline, one of the nine amino acids generated in the Miller-Urey experiment.
Collapse
|
2
|
Li H, Jiang Q, Zhang J, Wang Y, Zhang Y. Synchronization adsorption of Pb(Ⅱ) and Ce(Ⅲ) by biochar supported phosphate-doped ferrihydrite in aqueous solution: Adsorption efficiency and mechanisms. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Jana A, Sarkar TK, Chouhan A, Dasgupta D, Khatri OP, Ghosh D. Microbiologically Influenced Corrosion of Wastewater Pipeline and its Mitigation by Phytochemicals: Mechanistic Evaluation based on Spectroscopic, Microscopic and Theoretical Analyses. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Zhang Y, Zi F, Hu X, Chen Z, Yang P, Chen Y, Qin X, Chen S, He P, Lin Y, Zhao L. Mechanism of pyrite oxidation in copper(II)-ethylenediamine-thiosulphate gold leaching system. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Zhang S, Du Q, Sun Y, Song J, Yang F, Tsang DCW. Fabrication of L-cysteine stabilized α-FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb 2+ removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137415. [PMID: 32325559 DOI: 10.1016/j.scitotenv.2020.137415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) pollution has caused worldwide attention as it can cause hazards to humans and the environment. Chemical properties and structures of the adsorbent greatly influence the Pb2+ removal efficiency. L-cysteine (L-cy) stabilized porous hydrophilic biochar-supported α-FeOOH nanocomposites (L-cy/FeOOH@PHB) are prepared as an efficient adsorbent via a cheap and simple one-step hydrothermal method for removing Pb2+ from aqueous solution. Characterizations of the synthesized L-cy/FeOOH@PHB revealed that the iron particles distributed uniformly on the surface of porous hydrophilic biochar. The equilibrium adsorption capacity of the L-cy/FeOOH@PHB reaches up to 103.04 mg g-1for Pb2+ removal, higher than other typical materials reported preiously. The adsorption kinetics and isotherms were fitted well with the pseudo-second-order model and the Freundlich model, respectively, suggesting chemical adsorption on the heterogeneous surface and pores of L-cy/FeOOH@PHB. The introduction of L-cysteine provides abundant surface N- and S-containing functional groups as active sites for Pb2+ adsorption and also plays an important role in altering the porous structure, distribution of α-FeOOH nanoparticles, affinity of iron species to biochar, and surface functional groups, which determined the performance of the resultant composites. Notably, regeneration experiments show that Pb2+ adsorption capacity still maintains at 77.3 mg g-1 on L-cy/FeOOH@PHB after five successive utilizations, indicating the potential applicability for removing Pb2+ from aqueous solution.
Collapse
Affiliation(s)
- Shuaishuai Zhang
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Qing Du
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jingpeng Song
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Fan Yang
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Galvez-Martinez S, Escamilla-Roa E, Zorzano MP, Mateo-Marti E. Defects on a pyrite(100) surface produce chemical evolution of glycine under inert conditions: experimental and theoretical approaches. Phys Chem Chem Phys 2019; 21:24535-24542. [PMID: 31663552 DOI: 10.1039/c9cp03577j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The presence of non-stoichiometric sites on the pyrite(100) surface makes it a suitable substrate for driving the chemical evolution of the amino acid glycine over time, even under inert conditions. Spectroscopic molecular fingerprints prove a transition process from a zwitterionic species to an anionic species over time on the monosulfide enriched surface. By combining experimental and theoretical approaches, we propose a surface mechanism where the interaction between the amino acid species and the surface will be driven by the quenching of the surface states at Fe sites and favoured by sulfur vacancies. This study demonstrates the potential capability of pyrite to act as a surface catalyst.
Collapse
Affiliation(s)
- Santos Galvez-Martinez
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| | | | | | | |
Collapse
|
7
|
Mateo-Marti E, Galvez-Martinez S, Gil-Lozano C, Zorzano MP. Pyrite-induced uv-photocatalytic abiotic nitrogen fixation: implications for early atmospheres and Life. Sci Rep 2019; 9:15311. [PMID: 31653928 PMCID: PMC6814809 DOI: 10.1038/s41598-019-51784-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/08/2019] [Indexed: 11/09/2022] Open
Abstract
The molecular form of nitrogen, N2, is universally available but is biochemically inaccessible for life due to the strength of its triple bond. Prior to the emergence of life, there must have been an abiotic process that could fix nitrogen in a biochemically usable form. The UV photo-catalytic effects of minerals such as pyrite on nitrogen fixation have to date been overlooked. Here we show experimentally, using X-ray photoemission and infrared spectroscopies that, under a standard earth atmosphere containing nitrogen and water vapour at Earth or Martian pressures, nitrogen is fixed to pyrite as ammonium iron sulfate after merely two hours of exposure to 2,3 W/m 2 of ultraviolet irradiance in the 200-400 nm range. Our experiments show that this process exists also in the absence of UV, although about 50 times slower. The experiments also show that carbonates species are fixed on pyrite surface.
Collapse
Affiliation(s)
- E Mateo-Marti
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain.
| | - S Galvez-Martinez
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain
| | - C Gil-Lozano
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain
| | - María-Paz Zorzano
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Madrid, Spain.,Department of Computer Science, Electrical and Space Engineering, Luleå Universit of Technology, 97187, Luleå, Sweden
| |
Collapse
|
8
|
Mateo-Marti E, Prieto-Ballesteros O, Muñoz Caro G, González-Díaz C, Muñoz-Iglesias V, Gálvez-Martínez S. Characterizing Interstellar Medium, Planetary Surface and Deep Environments by Spectroscopic Techniques Using Unique Simulation Chambers at Centro de Astrobiologia (CAB). Life (Basel) 2019; 9:life9030072. [PMID: 31510002 PMCID: PMC6789534 DOI: 10.3390/life9030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
At present, the study of diverse habitable environments of astrobiological interest has become a major challenge. Due to the obvious technical and economical limitations on in situ exploration, laboratory simulations are one of the most feasible research options to make advances both in several astrobiologically interesting environments and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum and high pressure technology to the design of versatile simulation chambers devoted to the simulation of the interstellar medium, planetary atmospheres conditions and high-pressure environments. These simulation facilities are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Furthermore, the implementation of several spectroscopies, such as infrared, Raman, ultraviolet, etc., to study solids, and mass spectrometry to monitor the gas phase, in our simulation chambers, provide specific tools for the in situ physico-chemical characterization of analogues of astrobiological interest. Simulation chamber facilities are a promising and potential tool for planetary exploration of habitable environments. A review of many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these unique experimental systems.
Collapse
Affiliation(s)
- Eva Mateo-Marti
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Spain.
| | | | - Guillermo Muñoz Caro
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Spain.
| | | | | | - Santos Gálvez-Martínez
- Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejón de Ardoz, Spain.
| |
Collapse
|
9
|
Ultraviolet Irradiation on a Pyrite Surface Improves Triglycine Adsorption. Life (Basel) 2018; 8:life8040050. [PMID: 30366364 PMCID: PMC6316772 DOI: 10.3390/life8040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022] Open
Abstract
We characterized the adsorption of triglycine molecules on a pyrite surface under several simulated environmental conditions by X-ray photoemission spectroscopy. The triglycine molecular adsorption on a pyrite surface under vacuum conditions (absence of oxygen) shows the presence of two different states for the amine functional group (NH2 and NH3+), therefore two chemical species (anionic and zwitterionic). On the other hand, molecular adsorption from a solution discriminates the NH2 as a unique molecular adsorption form, however, the amount adsorbed in this case is higher than under vacuum conditions. Furthermore, molecular adsorption on the mineral surface is even favored if the pyrite surface has been irradiated before the molecular adsorption occurs. Pyrite surface chemistry is highly sensitive to the chemical changes induced by UV irradiation, as XPS analysis shows the presence of Fe2O3 and Fe2SO4—like environments on the surface. Surface chemical changes induced by UV help to increase the probability of adsorption of molecular species and their subsequent concentration on the pyrite surface.
Collapse
|
10
|
Sanchez-Arenillas M, Mateo-Marti E. Pyrite surface environment drives molecular adsorption: cystine on pyrite(100) investigated by X-ray photoemission spectroscopy and low energy electron diffraction. Phys Chem Chem Phys 2018; 18:27219-27225. [PMID: 27711447 DOI: 10.1039/c6cp03760g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have demonstrated that the annealing process for cleaning pyrite surfaces is a critical parameter in promoting ordering on the surface and driving surface reactivity. Furthermore, we describe a spectroscopic surface characterization of the presence or absence of the surface ordering, as indicated by the Low Energy Electron Diffraction (LEED) pattern, as a function of the surface annealing process. Complementary X-ray photoemission spectroscopy (XPS) results provide evidence that longer annealing processes of over 3 hours repair the sulfur vacancies in the pyrite, making FeS species partially disappear in favor of FeS2 species. These features play an important role in molecular adsorption. We show that in the case of the cystine amino acid on the (100) pyrite surface, the substrate structure is responsible for the chemical adsorption form. The presence of an ordered structure on the surface, as indicated by the LEED pattern, favors the cystine NH3+ chemical form, whereas the absence of the surface ordering promotes cystine NH2 adsorption due to the sulfur-deficient surface. The cystine molecule could then act by changing its chemical functionalities to compensate for the iron surface coordination. The chemical molecular adsorption form can be selected by the surface annealing conditions, implying that environmental conditions could drive molecular adsorption on mineral surfaces. These findings are relevant in several surface processes, and they could play a possible role in prebiotic chemistry surface reactions and iron-sulfur scenarios.
Collapse
Affiliation(s)
- M Sanchez-Arenillas
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
| | - E Mateo-Marti
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
| |
Collapse
|
11
|
Salles RCM, Coutinho LH, da Veiga AG, Sant’Anna MM, de Souza GGB. Surface damage in cystine, an amino acid dimer, induced by keV ions. J Chem Phys 2018; 148:045107. [DOI: 10.1063/1.5011816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- R. C. M. Salles
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ, Brazil
| | - L. H. Coutinho
- Instituto de Física, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ, Brazil
| | - A. G. da Veiga
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ, Brazil
| | - M. M. Sant’Anna
- Instituto de Física, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-972 Rio de Janeiro, RJ, Brazil
| | - G. G. B. de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Qiu P, Yang H, Song Y, Yang L, Lv L, Zhao X, Ge L, Chen C. Potent and environmental-friendly l-cysteine @ Fe2O3 nanostructure for photoelectrochemical water splitting. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Xian H, Zhu J, Liang X, He H. Morphology controllable syntheses of micro- and nano-iron pyrite mono- and poly-crystals: a review. RSC Adv 2016. [DOI: 10.1039/c6ra04874a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review provides comprehensive information of the outline of current knowledge regarding the morphology controllable syntheses of micro- and nano-iron pyrite mono- and poly-crystals.
Collapse
Affiliation(s)
- Haiyang Xian
- Key Laboratory of Mineralogy and Metallogeny
- Guangzhou Institute of Geochemistry
- Chinese Academy of Sciences
- Guangzhou 510640
- People's Republic of China
| | - Jianxi Zhu
- Key Laboratory of Mineralogy and Metallogeny
- Guangzhou Institute of Geochemistry
- Chinese Academy of Sciences
- Guangzhou 510640
- People's Republic of China
| | - Xiaoliang Liang
- Key Laboratory of Mineralogy and Metallogeny
- Guangzhou Institute of Geochemistry
- Chinese Academy of Sciences
- Guangzhou 510640
- People's Republic of China
| | - Hongping He
- Key Laboratory of Mineralogy and Metallogeny
- Guangzhou Institute of Geochemistry
- Chinese Academy of Sciences
- Guangzhou 510640
- People's Republic of China
| |
Collapse
|