1
|
Nojima Y, Takaya T, Iwata K. Energy Transfer Characteristics of Lipid Bilayer Membranes of Liposomes Examined with Picosecond Time-Resolved Raman Spectroscopy. J Phys Chem B 2023; 127:6684-6693. [PMID: 37481745 DOI: 10.1021/acs.jpcb.3c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A number of biochemical reactions proceed inside biomembranes. Since the rate of a chemical reaction is influenced by chemical properties of the surrounding environment, it is important to examine the chemical environment inside the biomembranes. Although the energy transfer characteristics are a basic and important property of a reaction medium, experimental investigation of the thermal conducting capabilities of the biomembranes is a challenging task. We have examined the energy transfer characteristics of lipid bilayer membranes of liposomes, a good model system for the biomembrane, with picosecond time-resolved Raman spectroscopy. The cooling kinetics of the first excited singlet (S1) state of trans-stilbene solubilized within the lipid bilayer membranes is observed as a peak shift of the 1570 cm-1 Raman band of S1 trans-stilbene. The cooling rate constant of S1 trans-stilbene is obtained in six lipid bilayer membranes formed by phospholipids with different hydrocarbon chains, DSPC, DPPC, DMPC, DLPC, DOPC, and egg-PC. We estimate the thermal diffusivity of the lipid bilayer membranes with a known correlation between the cooling rate constant and the thermal diffusivity of the solvent. The thermal diffusivity estimated for the liquid-crystal-phase lipid bilayer membranes is 8.9 × 10-8 to 9.4 × 10-8 m2 s-1, while that for the gel-phase lipid bilayer membranes is 8.4 × 10-8 to 8.5 × 10-8 m2 s-1. The difference in thermal diffusivity between the two phases is explained by a one-dimensional diffusion equation of heat.
Collapse
Affiliation(s)
- Yuki Nojima
- Department of Chemistry, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
- Department of Chemistry, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Tomohisa Takaya
- Department of Chemistry, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Koichi Iwata
- Department of Chemistry, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
2
|
Kurisaki I, Tanaka S, Mori I, Umegaki T, Mori Y, Tanaka S. Thermal conductivity and conductance of protein in aqueous solution: Effects of geometrical shape. J Comput Chem 2023; 44:857-868. [PMID: 36468822 PMCID: PMC10107505 DOI: 10.1002/jcc.27048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Considering the importance of elucidating the heat transfer in living cells, we evaluated the thermal conductivity κ and conductance G of hydrated protein through all-atom non-equilibrium molecular dynamics simulation. Extending the computational scheme developed in earlier studies for spherical protein to cylindrical one under the periodic boundary condition, we enabled the theoretical analysis of anisotropic thermal conduction and also discussed the effects of protein size correction on the calculated results. While the present results for myoglobin and green fluorescent protein (GFP) by the spherical model were in fair agreement with previous computational and experimental results, we found that the evaluations for κ and G by the cylindrical model, in particular, those for the longitudinal direction of GFP, were enhanced substantially, but still keeping a consistency with experimental data. We also studied the influence by salt addition of physiological concentration, finding insignificant alteration of thermal conduction of protein in the present case.
Collapse
Affiliation(s)
- Ikuo Kurisaki
- Graduate School of System Informatics, Kobe University, Kobe, Japan
| | - Seiya Tanaka
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Ichiro Mori
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Toshihito Umegaki
- Graduate School of System Informatics, Kobe University, Kobe, Japan.,Center for Mathematical Modeling and Data Science, Osaka University, Osaka, Japan
| | - Yoshiharu Mori
- Graduate School of System Informatics, Kobe University, Kobe, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, Kobe, Japan
| |
Collapse
|
3
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Rafieiolhosseini N, Ejtehadi MR. Thermal conductivity of the cell membrane in the presence of cholesterol and amyloid precursor protein. Phys Rev E 2020; 102:042401. [PMID: 33212660 DOI: 10.1103/physreve.102.042401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
The cell membrane is responsible for the transportation of heat between inside and outside the cell. Whether the thermal properties of the cell membrane are affected by the cholesterol concentration or the membrane proteins has not been investigated so far. Although the experimental measurement of the membrane thermal conductivity was not available until very recently, computational methods have been widely used for this purpose. In this study, we carry out molecular dynamics simulations to investigate the relation between the concentration of cholesterol and the thermal conductivity of a model membrane. Our results suggest an increase in the membrane thermal conductivity upon increasing the concentration of cholesterol in the membrane. Moreover, we find that the asymmetric distribution of cholesterol in the two membrane leaflets decreases thermal conductivity. We also find a rectification effect when heat flows in opposite directions through a model membrane decorated with the amyloid precursor protein. The results of this study apply to the advancement of selective treatment methods, as well as the development of new materials such as biological rectifiers.
Collapse
Affiliation(s)
- Neda Rafieiolhosseini
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran
| | | |
Collapse
|
5
|
Suzuki M, Plakhotnik T. The challenge of intracellular temperature. Biophys Rev 2020; 12:593-600. [PMID: 32172449 PMCID: PMC7242542 DOI: 10.1007/s12551-020-00683-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
This short review begins with a brief introductory summary of luminescence nanothermometry. Current applications of luminescence nanothermometry are introduced in biological contexts. Then, theoretical bases of the “temperature” that luminescence nanothermometry determines are discussed. This argument is followed by the 105 gap issue between simple calculation and the measurements reported in literatures. The gap issue is challenged by recent literatures reporting single-cell thermometry using non-luminescent probes, as well as a report that determines the thermal conductivity of a single lipid bilayer using luminescence nanothermometry. In the end, we argue if we can be optimistic about the solution of the 105 gap issue.
Collapse
Affiliation(s)
- Madoka Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Taras Plakhotnik
- School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
6
|
Lunnoo T, Assawakhajornsak J, Ruangchai S, Puangmali T. Role of Surface Functionalization on Cellular Uptake of AuNPs Characterized by Computational Microscopy. J Phys Chem B 2020; 124:1898-1908. [DOI: 10.1021/acs.jpcb.9b11600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thodsaphon Lunnoo
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Sukhum Ruangchai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
7
|
Torchi A, Simonelli F, Ferrando R, Rossi G. Local Enhancement of Lipid Membrane Permeability Induced by Irradiated Gold Nanoparticles. ACS NANO 2017; 11:12553-12561. [PMID: 29161019 DOI: 10.1021/acsnano.7b06690] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photothermal therapies are based on the optical excitation of plasmonic nanoparticles in the biological environment. The effects of the irradiation on the biological medium depend critically on the heat transfer process at the nanoparticle interface, on the temperature reached by the tissues, as well as on the spatial extent of temperature gradients. Unfortunately, both the temperature and its biological effects are difficult to be probed experimentally at the molecular scale. Here, we approach this problem using nonequilibrium molecular dynamics simulations. We focus on photoporation, a photothermal application based on the irradiation of gold nanoparticles by single, short-duration laser pulses. The nanoparticles, stably bound to cell membranes, convert the radiation into heat, inducing transient changes of membrane permeability. We make a quantitative prediction of the temperature gradient around the nanoparticle upon irradiation by typical experimental laser fluences. Water permeability is locally enhanced around the nanoparticle, in an annular region that extends only a few nanometers from the nanoparticle interface. We correlate the local enhancement of permeability at the nanoparticle-lipid interface to the temperature inhomogeneities of the membrane and to the consequent availability of free volume pockets within the membrane core.
Collapse
Affiliation(s)
- Andrea Torchi
- Physics Department, University of Genoa , via Dodecaneso 33, 16146 Genoa, Italy
| | - Federica Simonelli
- Physics Department, University of Genoa , via Dodecaneso 33, 16146 Genoa, Italy
| | - Riccardo Ferrando
- Chemistry Department, University of Genoa , via Dodecaneso 31, 16146 Genoa, Italy
| | - Giulia Rossi
- Physics Department, University of Genoa , via Dodecaneso 33, 16146 Genoa, Italy
| |
Collapse
|
8
|
Malekkhaiat Häffner S, Malmsten M. Membrane interactions and antimicrobial effects of inorganic nanoparticles. Adv Colloid Interface Sci 2017; 248:105-128. [PMID: 28807368 DOI: 10.1016/j.cis.2017.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Interactions between nanoparticles and biological membranes are attracting increasing attention in current nanomedicine, and play a key role both for nanotoxicology and for utilizing nanomaterials in diagnostics, drug delivery, functional biomaterials, as well as combinations of these, e.g., in theranostics. In addition, there is considerable current interest in the use of nanomaterials as antimicrobial agents, motivated by increasing resistance development against conventional antibiotics. Here, various nanomaterials offer opportunities for triggered functionalites to combat challenging infections. Although the performance in these diverse applications is governed by a complex interplay between the nanomaterial, the properties of included drugs (if any), and the biological system, nanoparticle-membrane interactions constitute a key initial step and play a key role for the subsequent biological response. In the present overview, the current understanding of inorganic nanomaterials as antimicrobial agents is outlined, with special focus on the interplay between antimicrobial effects and membrane interactions, and how membrane interactions and antimicrobial effects of such materials depend on nanoparticle properties, membrane composition, and external (e.g., light and magnetic) fields.
Collapse
Affiliation(s)
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
9
|
Volkov V, Perry CC. Modeling of Infrared-Visible Sum Frequency Generation Microscopy Images of a Giant Liposome. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:1128-1145. [PMID: 27784342 DOI: 10.1017/s1431927616011752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The article explores the theory of infrared-visible sum frequency generation microscopy of phospholipid envelopes with dimensions larger than the wavelength of the nonlinear emission. The main part of the study concerns derivation and accounting for the contributions of effective nonlinear responses specific to sites on the surfaces of a bilayer envelope and their dependence on polarization condition and experimental geometry. The nonlinear responses of sites are mapped onto the image plane according to their emission directions and the numerical aperture of a sampling microscope objective. According to the simulation results, we discuss possible approaches to characterize the shape of the envelope, to extract molecular hyperpolarizabilities, and to anticipate possible heterogeneity in envelope composition and anisotropy of the environment proximal to the envelope. The modeling approach offers a promising analytic facility to assist connecting microscopy observations in engineered liposomes, cellular envelopes, and subcellular organelles of relatively large dimensions to molecular properties, and hence to chemistry and structure down to available spatial resolution.
Collapse
Affiliation(s)
- Victor Volkov
- School of Science and Technology,Interdisciplinary Biomedical Research Center,Nottingham Trent University,Clifton Lane,Nottingham NG11 8NS,UK
| | - Carole C Perry
- School of Science and Technology,Interdisciplinary Biomedical Research Center,Nottingham Trent University,Clifton Lane,Nottingham NG11 8NS,UK
| |
Collapse
|
10
|
Viitala L, Pajari S, Lajunen T, Kontturi LS, Laaksonen T, Kuosmanen P, Viitala T, Urtti A, Murtomäki L. Photothermally Triggered Lipid Bilayer Phase Transition and Drug Release from Gold Nanorod and Indocyanine Green Encapsulated Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4554-4563. [PMID: 27089512 DOI: 10.1021/acs.langmuir.6b00716] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In light-activated liposomal drug delivery systems (DDSs), the light sensitivity can be obtained by a photothermal agent that converts light energy into heat. Excess heat increases the drug permeability of the lipid bilayer, and drug is released as a result. In this work, two near-IR responsive photothermal agents in a model drug delivery system are studied: either gold nanorods (GNRs) encapsulated inside the liposomes or indocyanine green (ICG) embedded into the lipid bilayer. The liposome system is exposed to light, and the heating effect is studied with fluorescent thermometers: laurdan and CdSe quantum dots (QDs). Both photothermal agents are shown to convert light into heat in an extent to cause a phase transition in the surrounding lipid bilayer. This phase transition is also proven with laurdan generalized polarization (GP). In addition to the heating results, we show that the model drug (calcein) is released from the liposomal cavity with both photothermal agents when the light power is sufficient to cause a phase transition in the lipid bilayer.
Collapse
Affiliation(s)
- Lauri Viitala
- Department of Chemistry, Aalto University , P.O. Box 16100, FI-00076 Aalto, Finland
| | - Saija Pajari
- Department of Chemistry, Aalto University , P.O. Box 16100, FI-00076 Aalto, Finland
| | - Tatu Lajunen
- Faculty of Pharmacy, University of Helsinki , P.O. Box 56, FI-00014 Helsinki, Finland
| | - Leena-Stiina Kontturi
- Faculty of Pharmacy, University of Helsinki , P.O. Box 56, FI-00014 Helsinki, Finland
- Department of Pharmaceutics, Utrecht University , Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Timo Laaksonen
- Faculty of Pharmacy, University of Helsinki , P.O. Box 56, FI-00014 Helsinki, Finland
| | - Päivi Kuosmanen
- Department of Chemistry, Aalto University , P.O. Box 16100, FI-00076 Aalto, Finland
| | - Tapani Viitala
- Faculty of Pharmacy, University of Helsinki , P.O. Box 56, FI-00014 Helsinki, Finland
| | - Arto Urtti
- Faculty of Pharmacy, University of Helsinki , P.O. Box 56, FI-00014 Helsinki, Finland
- School of Pharmacy, University of Eastern Finland , P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Lasse Murtomäki
- Department of Chemistry, Aalto University , P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
11
|
Lajunen T, Kontturi LS, Viitala L, Manna M, Cramariuc O, Róg T, Bunker A, Laaksonen T, Viitala T, Murtomäki L, Urtti A. Indocyanine Green-Loaded Liposomes for Light-Triggered Drug Release. Mol Pharm 2016; 13:2095-107. [DOI: 10.1021/acs.molpharmaceut.6b00207] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tatu Lajunen
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Leena-Stiina Kontturi
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- Department
of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Lauri Viitala
- Department
of Chemistry, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Moutusi Manna
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Oana Cramariuc
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Tomasz Róg
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Alex Bunker
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Timo Laaksonen
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- Department
of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere, Finland
| | - Tapani Viitala
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Lasse Murtomäki
- Department
of Chemistry, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Arto Urtti
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- School
of
Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|