1
|
Ballabio M, Cánovas E. Electron Transfer at Quantum Dot–Metal Oxide Interfaces for Solar Energy Conversion. ACS NANOSCIENCE AU 2022; 2:367-395. [PMID: 36281255 PMCID: PMC9585894 DOI: 10.1021/acsnanoscienceau.2c00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Electron transfer
at a donor–acceptor quantum dot–metal
oxide interface is a process fundamentally relevant to solar energy
conversion architectures as, e.g., sensitized solar cells and solar
fuels schemes. As kinetic competition at these technologically relevant
interfaces largely determines device performance, this Review surveys
several aspects linking electron transfer dynamics and device efficiency;
this correlation is done for systems aiming for efficiencies up to
and above the ∼33% efficiency limit set by Shockley and Queisser
for single gap devices. Furthermore, we critically comment on common
pitfalls associated with the interpretation of kinetic data obtained
from current methodologies and experimental approaches, and finally,
we highlight works that, to our judgment, have contributed to a better
understanding of the fundamentals governing electron transfer at quantum
dot–metal oxide interfaces.
Collapse
Affiliation(s)
- Marco Ballabio
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| | - Enrique Cánovas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| |
Collapse
|
2
|
Zhang Y, Wu G, Liu F, Ding C, Zou Z, Shen Q. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chem Soc Rev 2020; 49:49-84. [PMID: 31825404 DOI: 10.1039/c9cs00560a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The certified power conversion efficiency (PCE) record of colloidal quantum dot solar cells (QDSCs) has considerably improved from below 4% to 16.6% in the last few years. However, the record PCE value of QDSCs is still substantially lower than the theoretical efficiency. So far, there have been several reviews on recent and significant achievements in QDSCs, but reviews on photoexcited carrier dynamics in QDSCs are scarce. The photovoltaic performances of QDSCs are still limited by the photovoltage, photocurrent and fill factor that are mainly determined by the photoexcited carrier dynamics, including carrier (or exciton) generation, carrier extraction or transfer, and the carrier recombination process, in the devices. In this review, the photoexcited carrier dynamics in the whole QDSCs, originating from individual quantum dots (QDs) to the entire device as well as the characterization methods used for analyzing the photoexcited carrier dynamics are summarized and discussed. The recent research including photoexcited multiple exciton generation (MEG), hot electron extraction, and carrier transfer between adjacent QDs, as well as carrier injection and recombination at each interface of QDSCs are discussed in detail herein. The influence of photoexcited carrier dynamics on the physiochemical properties of QDs and photovoltaic performances of QDSC devices is also discussed.
Collapse
Affiliation(s)
- Yaohong Zhang
- Faculty of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan.
| | | | | | | | | | | |
Collapse
|
3
|
Han P, Hou ICY, Lu H, Wang XY, Müllen K, Bonn M, Narita A, Cánovas E. Chemisorption of Atomically Precise 42-Carbon Graphene Quantum Dots on Metal Oxide Films Greatly Accelerates Interfacial Electron Transfer. J Phys Chem Lett 2019; 10:1431-1436. [PMID: 30848919 PMCID: PMC6727373 DOI: 10.1021/acs.jpclett.9b00399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/08/2019] [Indexed: 05/27/2023]
Abstract
Graphene quantum dots (GQDs) are emerging as environmentally friendly, low-cost, and highly tunable building blocks in solar energy conversion architectures, such as solar (fuel) cells. Specifically, GQDs constitute a promising alternative for organometallic dyes in sensitized oxide systems. Current sensitized solar cells employing atomically precise GQDs are based on physisorbed sensitizers, with typically limited efficiencies. Chemisorption has been pointed out as a solution to boost photoconversion efficiencies, by allowing improved control over sensitizer surface coverage and sensitizer-oxide coupling strength. Here, employing time-resolved THz spectroscopy, we demonstrate that chemisorption of atomically precise C42-GQDs (hexa- peri-hexabenzocoronene derivatives consisting of 42 sp2 carbon atoms) onto mesoporous metal oxides, enabled by their functionalization with a carboxylate group, enhances electron transfer (ET) rates by almost 2 orders of magnitude when compared with physisorbed sensitizers. Density functional theory (DFT) calculations, absorption spectroscopy and valence band X-ray photoelectron spectroscopy reveal that the enhanced ET rates can be traced to stronger donor-acceptor coupling strength enabled by chemisorption.
Collapse
Affiliation(s)
- Peng Han
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ian Cheng-Yi Hou
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hao Lu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiao-Ye Wang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Physical Chemistry, Johannes Gutenberg
University Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Organic
and Carbon Nanomaterials Unit, Okinawa Institute
of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Enrique Cánovas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
4
|
Wang HI, Infante I, Brinck ST, Cánovas E, Bonn M. Efficient Hot Electron Transfer in Quantum Dot-Sensitized Mesoporous Oxides at Room Temperature. NANO LETTERS 2018; 18:5111-5115. [PMID: 30039708 DOI: 10.1021/acs.nanolett.8b01981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hot carrier cooling processes represent one of the major efficiency losses in solar energy conversion. Losses associated with cooling can in principle be circumvented if hot carrier extraction toward selective contacts is faster than hot carrier cooling in the absorber (in so-called hot carrier solar cells). Previous work has demonstrated the possibility of hot electron extraction in quantum dot (QD)-sensitized systems, in particular, at low temperatures. Here we demonstrate a room-temperature hot electron transfer (HET) with up to unity quantum efficiency in strongly coupled PbS quantum dot-sensitized mesoporous SnO2. We show that the HET efficiency is determined by a kinetic competition between HET rate ( KHET) and the thermalization rate ( KTH) in the dots. KHET can be modulated by changing the excitation photon energy; KTH can be modified through the lattice temperature. DFT calculations demonstrate that the HET rate and efficiency are primarily determined by the density of the state (DoS) of QD and oxide. Our results provide not only a new way to achieve efficient hot electron transfer at room temperature but also new insights on the mechanism of HET and the means to control it.
Collapse
Affiliation(s)
- Hai I Wang
- Max Planck Institute for Polymer Research , Ackermannweg 10 , Mainz 55128 , Germany
- Graduate School of Material Science in Mainz , University of Mainz , Staudingerweg 9 , Mainz 55128 , Germany
| | - Ivan Infante
- Department of Theoretical Chemistry, Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1083 , HV Amsterdam 1081 , The Netherlands
| | - Stephanie Ten Brinck
- Department of Theoretical Chemistry, Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1083 , HV Amsterdam 1081 , The Netherlands
| | - Enrique Cánovas
- Max Planck Institute for Polymer Research , Ackermannweg 10 , Mainz 55128 , Germany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) , Faraday 9 , Madrid 28049 , Spain
| | - Mischa Bonn
- Max Planck Institute for Polymer Research , Ackermannweg 10 , Mainz 55128 , Germany
| |
Collapse
|
5
|
Li L, Kanai Y. Dependence of hot electron transfer on surface coverage and adsorbate species at semiconductor–molecule interfaces. Phys Chem Chem Phys 2018; 20:12986-12991. [DOI: 10.1039/c7cp07247c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Developing a molecular-level understanding of how a hot electron transfer process can be enhanced at semiconductor–molecule interfaces is central to advancing various future technologies.
Collapse
Affiliation(s)
- Lesheng Li
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- North Carolina 27599
- USA
| | - Yosuke Kanai
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- North Carolina 27599
- USA
| |
Collapse
|
6
|
Karakus M, Zhang W, Räder HJ, Bonn M, Cánovas E. Electron Transfer from Bi-Isonicotinic Acid Emerges upon Photodegradation of N3-Sensitized TiO 2 Electrodes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35376-35382. [PMID: 28914045 DOI: 10.1021/acsami.7b08986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The long-term stability of dye-sensitized solar cells (DSSCs) is determined to a large extent by the photodegradation of their sensitizers. Understanding the mechanism of light-induced decomposition of dyes sensitizing a mesoporous oxide matrix may therefore contribute to solutions to increase the life span of DSSCs. Here, we investigate, using ultrafast terahertz photoconductivity measurements, the evolution of interfacial electron-transfer (ET) dynamics in Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2(NCS)2 (N3) dye-sensitized mesoporous TiO2 electrodes upon dye photodegradation. Under inert environment, interfacial ET dynamics do not change over time, indicating that the dye is stable and photodegradation is absent; the associated ET dynamics are characterized by a sub-100 fs rise of the photoconductivity, followed by long-lived (≫1 ns) electrons in the oxide electrode. When the N3-TiO2 sample is exposed to air under identical illumination conditions, dye photodegradation is evident from the disappearance of the optical absorption associated with the dye. Remarkably, approximately half of the sub-100 fs ET is observed to still occur but is followed by very rapid (∼10 ps) electron-hole recombination. Laser desorption/ionization mass spectrometry, attenuated total reflection-Fourier transform infrared, and terahertz photoconductivity analyses reveal that the photodegraded ET signal originates from the N3 dye photodegradation product as bi-isonicotinic acid (4,4'-dicarboxylic acid-2,2'-bipyridine), which remains bonded to the TiO2 surface via either bidentate chelation or bridging-type geometry.
Collapse
Affiliation(s)
- Melike Karakus
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Wen Zhang
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Hans Joachim Räder
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Enrique Cánovas
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
7
|
Wang HI, Bonn M, Cánovas E. Boosting Biexciton Collection Efficiency at Quantum Dot-Oxide Interfaces by Hole Localization at the Quantum Dot Shell. J Phys Chem Lett 2017; 8:2654-2658. [PMID: 28558226 DOI: 10.1021/acs.jpclett.7b00966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Harvesting multiexcitons from semiconductor quantum dots (QDs) has been proposed as a path toward photovoltaic efficiencies beyond the Shockley-Queisser limit. Although multiexciton generation efficiencies have been quantified extensively in QD structures, the challenge of actually collecting multiple excitons at electrodes-a prerequisite for high-efficiency solar cell devices-has received less attention. Here, we demonstrate that multiexciton collection (MEC) at the PbS QD/mesoporous SnO2 interface can be boosted 5-fold from ∼15 to reach ∼80% quantum yield, by partial localization of holes in a QD molecular capping shell. The resulting weakened Coulombic interactions give rise to reduced Auger recombination rates within the molecularly capped QDs, so that biexciton Auger relaxation, competing with MEC, is strongly suppressed. These results not only highlight the importance of surface chemistry and energetics at QD/ligand interfaces for multiexciton extraction but also provide clear design principles for realizing the benefits of MEG in sensitized systems exploited in solar cells and fuel geometries.
Collapse
Affiliation(s)
- Hai I Wang
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
- Graduate School of Material Science in Mainz, University of Mainz , Staudingerweg 9, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Enrique Cánovas
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
8
|
Wang HI, Lu H, Nagata Y, Bonn M, Cánovas E. Dipolar Molecular Capping in Quantum Dot-Sensitized Oxides: Fermi Level Pinning Precludes Tuning Donor-Acceptor Energetics. ACS NANO 2017; 11:4760-4767. [PMID: 28388028 DOI: 10.1021/acsnano.7b01064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reducing the donor-acceptor excess energy (ΔGET) associated with electron transfer (ET) across quantum dot (QD)/oxide interfaces can boost photoconversion efficiencies in sensitized solar cell and fuel architectures. One proposed path for engineering ΔGET losses at interfaces refers to the tuning of sensitizer workfunction by exploiting QD dipolar molecular capping treatments. However, the change in workfunction per debye in QD solids has been reported to be ∼20-fold larger when compared to the effect achieved in QD-sensitized architectures. The origin behind the modest workfunction tunability in QD-sensitized oxides remains unclear. Here, we investigate the interplay between QD dipolar molecular capping, interfacial QD-oxide ET rates, and QD workfunction in PbS QD/SnO2-sensitized interfaces. We find that interfacial QD-to-oxide ET is invariant to both the nature and strength of the specific QD dipolar capping treatment. Photoelectron spectroscopy reveals that the resolved invariance in ET rates is the result of a lack of QD workfunction (and hence ΔGET) tuning, despite effective molecular dipolar capping. We therefore conclude that Fermi level pinning precludes tuning donor-acceptor energetics by dipolar molecular capping in strongly coupled quantum dot-sensitized oxides.
Collapse
Affiliation(s)
- Hai I Wang
- Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
- Graduate School of Material Science in Mainz, University of Mainz , Staudingerweg 9, 55128 Mainz, Germany
| | - Hao Lu
- Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Enrique Cánovas
- Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
9
|
Colbert AE, Jedlicka E, Wu W, Ginger DS. Subpicosecond Photon-Energy-Dependent Hole Transfer from PbS Quantum Dots to Conjugated Polymers. J Phys Chem Lett 2016; 7:5150-5155. [PMID: 27973888 DOI: 10.1021/acs.jpclett.6b02490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We use transient absorption (TA) spectroscopy to study the origin of photon-energy dependent hole transfer yields in blends of PbS quantum dots with the conjugated polymer poly(3-hexylthiophene-2,5-diyl) (P3HT). We selectively excite only the quantum dots at two different wavelengths and measure the polymer ground state bleach resulting from the transfer of photoexcited holes. The higher photon-energy pump shows a greater prompt yield of hole transfer compared to the lower photon-energy excitation, on time scales sufficient to out-compete hot carrier cooling in lead chalcogenide quantum dots. We interpret the results as evidence that the excess energy of nonthermalized, or "hot," excitons resulting from higher photon-energy excitation allows more efficient charge transfer to the polymer in these systems. The data also demonstrate slow charge transfer rates, up to ∼1 ns, of the relaxed excitations on the PbS dots. These findings help to clarify the role of excess photon energy and carrier relaxation dynamics on free carrier generation in donor/acceptor solar cells.
Collapse
Affiliation(s)
- Adam E Colbert
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Erin Jedlicka
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Wenbi Wu
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|