1
|
Mejdrová I, Węgrzyn E, Carell T. Step-by-Step Towards Biological Homochirality - from Prebiotic Randomness To Perfect Asymmetry. Chem Asian J 2025; 20:e202401074. [PMID: 39400505 DOI: 10.1002/asia.202401074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
The history of life's formation and the origin of its stereochemistry are nearly as multifaceted as the life itself. In this review, we focus on analyzing the step-by-step path leading to what we can define as "life" in parallel to what we know about the emergence of enantiomeric imbalance and subsequent transition to full homochirality. We start at the level of assembly of the building blocks of life from inorganic molecules and build up to the polymerization and formation of nucleic acids and peptides. We report and analyze different theories at various stages of this development and try to elucidate the most plausible theory.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Ewa Węgrzyn
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377, Munich, Germany
| |
Collapse
|
2
|
Inoue K, Fujihara A. Differentiation of free d-amino acids and amino acid isomers in solution using tandem mass spectrometry of hydrogen-bonded clusters. J Pharm Biomed Anal 2023; 234:115567. [PMID: 37441889 DOI: 10.1016/j.jpba.2023.115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Free d-amino acids and amino acid isomers were differentiated using tandem mass spectrometry without chromatographic separation. Ultraviolet photodissociation and water adsorption of leucine (Leu) and isoleucine (Ile) enantiomers hydrogen-bonded with tryptophan (Trp) were investigated at 8 K in the gas phase. The enantiomer-selective Cα-Cβ bond cleavage of Trp was observed in the product ion spectra obtained by 285 nm photoexcitation, where the abundance of NH2CHCOOH-eliminated ion of heterochiral H+(d-Trp)(l-Leu) was higher than that of homochiral H+(l-Trp)(l-Leu). When comparing water adsorption on the surfaces of the heterochiral and homochiral clusters in a cold ion trap, the number of water molecules adsorbed on the heterochiral cluster was greater than that adsorbed on the homochiral cluster. These results indicate that the stronger intermolecular interactions within the homochiral H+(l-Trp)(l-Leu) compared to the heterochiral cluster inhibit enantiomer-selective photodissociation. Leu and Ile were differentiated by the isomer-selective Cα-Cβ bond cleavage of Trp in the clusters. Calibration curves for the differentiation of isomeric amino acids and their enantiomers were developed using monitoring isomer- and enantiomer-selective photodissociation, indicating that the molar fractions in solution could be determined from a single product ion spectrum.
Collapse
Affiliation(s)
- Kanako Inoue
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Akimasa Fujihara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 599-8531, Japan.
| |
Collapse
|
3
|
Inoue K, Fujihara A. D-Amino acid recognition of tripeptides studied by ultraviolet photodissociation spectroscopy of hydrogen-bonded clusters. Amino Acids 2023:10.1007/s00726-023-03284-3. [PMID: 37310535 DOI: 10.1007/s00726-023-03284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/20/2023] [Indexed: 06/14/2023]
Abstract
To understand the roles of D-amino acids, evaluating their chemical properties in living organisms is essential. Herein, D-amino acid recognition of peptides was investigated using a tandem mass spectrometer equipped with an electrospray ionization source and a cold ion trap. Ultraviolet (UV) photodissociation spectroscopy and water adsorption of hydrogen-bonded protonated clusters of tryptophan (Trp) enantiomers and tripeptides (SAA, ASA, and AAS, where S and A denote L-serine and L-alanine, respectively) were carried out at 8 K in the gas phase. In the UV photodissociation spectrum of H+(D-Trp)ASA, the bandwidth of the S1-S0 transition, which corresponds to the ππ* state of the Trp indole ring, was narrower than those of the other five clusters, H+(D-Trp)SAA, H+(D-Trp)AAS, H+(L-Trp)SAA, H+(L-Trp)ASA, and H+(L-Trp)AAS. In the UV photoexcitation of H+(D-Trp)ASA(H2O)n, which were formed via water adsorption on gas-phase H+(D-Trp)ASA, the evaporation of water molecules was the main photodissociation pathway. An NH2CHCOOH-eliminated ion and H+ASA were observed in the product ion spectrum. By contrast, water molecules adsorbed on the other five clusters remained on the product ions for NH2CHCOOH elimination and Trp detachment after the UV photoexcitation. The results indicated that the indole ring of Trp was located on the surface of H+(D-Trp)ASA, and the amino and carboxyl groups of Trp formed hydrogen bonds in H+(D-Trp)ASA. For the other five clusters, the indole rings of Trp were hydrogen bonded in the clusters, and the amino and carboxyl groups of Trp were present on the cluster surfaces.
Collapse
Affiliation(s)
- Kanako Inoue
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, 599-8531, Japan
| | - Akimasa Fujihara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, 599-8531, Japan.
| |
Collapse
|
4
|
Nagai D, Fujihara A. Quantification of disaccharides in solution using isomer-selective ultraviolet photodissociation of hydrogen-bonded clusters in the gas phase. Carbohydr Res 2023; 523:108733. [PMID: 36571945 DOI: 10.1016/j.carres.2022.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Chemical properties of gas-phase hydrogen-bonded clusters were investigated as a model for interstellar molecular clouds. Cold gas-phase hydrogen-bonded clusters of tryptophan (Trp) enantiomers and disaccharide isomers, including d-maltose and d-cellobiose, were generated by electrospray ionization and collisional cooling in an ion trap at 8 K. Product ion spectra in the 265-290 nm wavelength range were obtained using tandem mass spectrometry. NH2CHCOOH loss via the Cα-Cβ bond cleavage of Trp occurred frequently in homochiral H+(d-Trp)(d-maltose) compared with heterochiral H+(l-Trp)(d-maltose) at 278 nm, indicating that an enantiomeric excess of l-Trp was formed via the enantiomer-selective photodissociation. The photoreactivity differed between the enantiomers and isomers contained in the clusters at the photoexcitation of 278 nm. A calibration curve for the quantification of disaccharide isomers in solution was constructed by photoexcitation of the hydrogen-bonded clusters of disaccharide isomers with H+(l-Trp) at 278 nm. A linear relationship between the natural logarithm of the relative product ion abundance and the mole fraction of d-maltose to d-cellobiose ratio in the solution was obtained, indicating that the mole fraction could be determined from a single product ion spectrum. A calibration curve, for quantification of Trp enantiomers, was also obtained using d-maltose as a chiral auxiliary.
Collapse
Affiliation(s)
- Daiya Nagai
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, 599-8531, Japan
| | - Akimasa Fujihara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, 599-8531, Japan.
| |
Collapse
|
5
|
Martínez RF, Cuccia LA, Viedma C, Cintas P. On the Origin of Sugar Handedness: Facts, Hypotheses and Missing Links-A Review. ORIGINS LIFE EVOL B 2022; 52:21-56. [PMID: 35796896 DOI: 10.1007/s11084-022-09624-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
By paraphrasing one of Kipling's most amazing short stories (How the Leopard Got His Spots), this article could be entitled "How Sugars Became Homochiral". Obviously, we have no answer to this still unsolved mystery, and this perspective simply brings recent models, experiments and hypotheses into the homochiral homogeneity of sugars on earth. We shall revisit the past and current understanding of sugar chirality in the context of prebiotic chemistry, with attention to recent developments and insights. Different scenarios and pathways will be discussed, from the widely known formose-type processes to less familiar ones, often viewed as unorthodox chemical routes. In particular, problems associated with the spontaneous generation of enantiomeric imbalances and the transfer of chirality will be tackled. As carbohydrates are essential components of all cellular systems, astrochemical and terrestrial observations suggest that saccharides originated from environmentally available feedstocks. Such substances would have been capable of sustaining autotrophic and heterotrophic mechanisms integrating nutrients, metabolism and the genome after compartmentalization. Recent findings likewise indicate that sugars' enantiomeric bias may have emerged by a transfer of chirality mechanisms, rather than by deracemization of sugar backbones, yet providing an evolutionary advantage that fueled the cellular machinery.
Collapse
Affiliation(s)
- R Fernando Martínez
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| | - Louis A Cuccia
- Department of Chemistry and Biochemistry, Quebec Centre for Advanced Materials (QCAM/CQMF), FRQNT, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Cristóbal Viedma
- Department of Crystallography and Mineralogy, University Complutense, 28040, Madrid, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
6
|
Du M, Zhang K, Jiao L, Xu Y, Kong X. Differentiation of disaccharide isomers via a combination of IR and UV photodissociation mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9218. [PMID: 34740281 DOI: 10.1002/rcm.9218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE The challenge of glycan identification due to their structural complexity and diversity has profited enormously from recent developments in mass spectrometry (MS)-related methods. For photodissociation MS, infrared (IR) and ultraviolet (UV) lasers can generate complementary fragment ions, so an effective combination of the two methods may provide rich and valuable fragmentation patterns for glycan analysis. METHODS A 7.0 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer equipped with a double-beam laser system was applied for the experiments. 3,5-Diiodo-L-tyrosine was selected as the assistant molecule to form complex ions with ten isomeric disaccharides through electrospray ionization. The complex ions were further isolated and irradiated by IR and UV lasers separately or continuously in the FTICR cell. RESULTS By combining the two complementary fragment spectra generated from the IR and UV lasers, a clear identification of all the ten isomers was achieved using their binary codes based on their fragmentation patterns. The double-beam method simplifies the experiment by introducing the two lasers sequentially in one experiment, providing richer fragmentation patterns and making the full discrimination easier. CONCLUSIONS This study demonstrates the capabilities of the combination of IR and UV photodissociation MS in the identification of diverse glycan isomers. The double-beam photodissociation method described here distinguished compositional, configurational and connectivity disaccharide isomers successfully. Compared with the data accumulation method based on separate IR and UV experiments, this method is simpler, faster, more flexible and also characterized by richer fragmentation patterns.
Collapse
Affiliation(s)
- Mengying Du
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Kailin Zhang
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, China
| | - Luyang Jiao
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Yicheng Xu
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Xianglei Kong
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| |
Collapse
|
7
|
Marlton SJP, Trevitt A. Laser Photodissocation, Action Spectroscopy and Mass Spectrometry Unite to Detect and Separate Isomers. Chem Commun (Camb) 2022; 58:9451-9467. [DOI: 10.1039/d2cc02101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation and detection of isomers remains a challenge for many areas of mass spectrometry. This article highlights laser photodissociation and ion mobility strategies that have been deployed to tackle...
Collapse
|
8
|
Inoue K, Fujihara A. Quantification of Amino Acid Enantiomers Using Electrospray Ionization and Ultraviolet Photodissociation. Mass Spectrom (Tokyo) 2021; 10:A0097. [PMID: 34552841 PMCID: PMC8440895 DOI: 10.5702/massspectrometry.a0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
The enantioselectivity of tryptophan (Trp) for amino acids, such as alanine (Ala), valine (Val), and serine (Ser), was investigated using ultraviolet (UV) photoexcitation and tandem mass spectrometry. Product ion spectra of cold gas-phase amino acid enantiomers that were hydrogen-bonded to Na+(L-Trp) were measured using a variable-wavelength UV laser and a tandem mass spectrometer equipped with an electrospray ionization source and a cold ion trap. Na+(L-Trp), formed via amino acid detachment, and the elimination of CO2 from the clusters were observed in the product ion spectra. For photoexcitation at 265 nm, the relative abundance of Na+(L-Trp) compared to that of the precursor ion observed in the product ion spectrum of heterochiral Na+(L-Trp)(D-Ala) was larger than that observed in the product ion spectrum of homochiral Na+(L-Trp)(L-Ala). A difference between the Val enantiomers in the relative abundance of the precursor and product ions was observed in the case of photoexcitation at 272 nm. The elimination of CO2 was not observed for L-Ser for the 285 nm photoexcitation, which was the main reaction pathway for D-Ser. Photoexcited Trp chiral recognition was applied to identify and quantify the amino acid enantiomers in solution. Ala, Val, and Ser enantiomers in solution were quantified from their relative abundances in single product ion spectra measured using photoexcitation at 265, 272, and 285 nm, respectively, for hydrogen-bonded Trp within the clusters.
Collapse
Affiliation(s)
- Kanako Inoue
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka 599–8531, Japan
| | - Akimasa Fujihara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka 599–8531, Japan
| |
Collapse
|
9
|
Murashima H, Fujihara A. Quantification of monosaccharide enantiomers using optical properties of hydrogen-bonded tryptophan. Anal Biochem 2021; 619:114151. [PMID: 33684343 DOI: 10.1016/j.ab.2021.114151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/22/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
Chiral recognition between amino acids and monosaccharides in the gas phase was investigated as a model for chemical evolution in interstellar molecular clouds. Ultraviolet (UV) photodissociation spectra and product ion spectra of cold gas-phase hydrogen-bonded clusters of protonated tryptophan (Trp) and a pentose, including ribose and arabinose, were obtained using a tandem mass spectrometer equipped with an electrospray ionization source and a temperature-controlled ion trap. The relative intensity of the signal arising from the S1-S0 transition of protonated Trp observed at approximately 285 nm in the UV photodissociation spectrum of homochiral H+(d-Trp)(d-ribose) was significantly higher than that of heterochiral H+(l-Trp)(d-ribose), corresponding to the ππ* state of the Trp indole ring. Optical properties of Trp in the clusters induced by 285-nm photoexcitation were applied to the identification and quantification of pentose enantiomers in solution. Pentose enantiomeric excess in solution was determined from relative abundances observed in a single product ion spectrum of 285-nm photoexcited hydrogen-bonded clusters of H+(l-Trp) and pentose. A mixture of two pentoses could also be quantified by this method. The geometric and electronic structures of Trp enable recognition of biological molecules through hydrogen bonding.
Collapse
Affiliation(s)
- Hiromori Murashima
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Akimasa Fujihara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan.
| |
Collapse
|
10
|
Zhao Y, Zhu X, Jiang W, Liu H, Sun B. Chiral Recognition for Chromatography and Membrane-Based Separations: Recent Developments and Future Prospects. Molecules 2021; 26:1145. [PMID: 33669919 PMCID: PMC7924630 DOI: 10.3390/molecules26041145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
With the rapid development of global industry and increasingly frequent product circulation, the separation and detection of chiral drugs/pesticides are becoming increasingly important. The chiral nature of substances can result in harm to the human body, and the selective endocrine-disrupting effect of drug enantiomers is caused by differential enantiospecific binding to receptors. This review is devoted to the specific recognition and resolution of chiral molecules by chromatography and membrane-based enantioseparation techniques. Chromatographic enantiomer separations with chiral stationary phase (CSP)-based columns and membrane-based enantiomer filtration are detailed. In addition, the unique properties of these chiral resolution methods have been summarized for practical applications in the chemistry, environment, biology, medicine, and food industries. We further discussed the recognition mechanism in analytical enantioseparations and analyzed recent developments and future prospects of chromatographic and membrane-based enantioseparations.
Collapse
Affiliation(s)
| | | | | | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China; (Y.Z.); (X.Z.); (W.J.); (B.S.)
| | | |
Collapse
|
11
|
Hanaichi S, Fujihara A. Identification and quantification of leucine and isoleucine residues in peptides using photoexcited tryptophan. Amino Acids 2020; 52:1107-1113. [PMID: 32710184 DOI: 10.1007/s00726-020-02875-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
|