1
|
Gešvandtnerová M, Bučko T, Raybaud P, Chizallet C. Monomolecular mechanisms of isobutanol conversion to butenes catalyzed by acidic zeolites: alcohol isomerization as a key to the production of linear butenes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Amsler J, Bernart S, Plessow PN, Studt F. Theoretical investigation of the olefin cycle in H-SSZ-13 for the ethanol-to-olefins process using ab initio calculations and kinetic modeling. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of the hydrocarbon pool (HCP) in the ethanol-to-olefins (ETO) process catalyzed by H-SSZ-13 is studied in a kinetic model with ab initio computed reaction barriers.
Collapse
Affiliation(s)
- Jonas Amsler
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sarah Bernart
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Wang CM, Yang G, Li Y, Du Y, Wang Y, Xie Z. Simple structure descriptors quantifying the diffusion of ethene in small-pore zeolites: Insights from molecular dynamic simulations. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01556g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small-pore zeolites with 8-rings are pivotal catalytic materials to produce light olefins from non-petroleum resources employing methanol-to-olefins or syngas-to-olefins processes. The constraints of cage openings on the diffusion of light...
Collapse
|
4
|
Cnudde P, Redekop EA, Dai W, Porcaro NG, Waroquier M, Bordiga S, Hunger M, Li L, Olsbye U, Van Speybroeck V. Experimental and Theoretical Evidence for the Promotional Effect of Acid Sites on the Diffusion of Alkenes through Small-Pore Zeolites. Angew Chem Int Ed Engl 2021; 60:10016-10022. [PMID: 33496374 PMCID: PMC8251642 DOI: 10.1002/anie.202017025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Indexed: 12/18/2022]
Abstract
The diffusion of saturated and unsaturated hydrocarbons is of fundamental importance for many zeolite‐catalyzed processes. Transport of small alkenes in the confined zeolite pores can become hindered, resulting in a significant impact on the ultimate product selectivity and separation. Herein, intracrystalline light olefin/paraffin diffusion through the 8‐ring windows of zeolite SAPO‐34 is characterized by a complementary set of first‐principle molecular dynamics simulations, PFG‐NMR experiments, and pulse‐response temporal analysis of products measurements, yielding information at different length and time scales. Our results clearly show a promotional effect of the presence of Brønsted acid sites on the diffusion rate of ethene and propene, whereas transport of alkanes is found to be insensitive to the presence of acid sites. The enhanced diffusivity of unsaturated hydrocarbons is ascribed to the formation of favorable π–H interactions with acid protons, as confirmed by IR spectroscopy measurements. The acid site distribution is proven to be an important design parameter for optimizing product distributions and separations.
Collapse
Affiliation(s)
- Pieter Cnudde
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | - Evgeniy A Redekop
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1126 Blindern, 0318, Oslo, Norway
| | - Weili Dai
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Natale G Porcaro
- Department of Chemistry, NIS Centre of Excellence and INSTM Reference Center, University of Turin, Via P. Giuria 7, 10125 10, Torino, Italy
| | - Michel Waroquier
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| | - Silvia Bordiga
- Department of Chemistry, NIS Centre of Excellence and INSTM Reference Center, University of Turin, Via P. Giuria 7, 10125 10, Torino, Italy
| | - Michael Hunger
- Institute of Chemical Technology, University of Stuttgart, 70550, Stuttgart, Germany
| | - Landong Li
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Unni Olsbye
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1126 Blindern, 0318, Oslo, Norway
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, 9052, Zwijnaarde, Belgium
| |
Collapse
|
5
|
Cnudde P, Redekop EA, Dai W, Porcaro NG, Waroquier M, Bordiga S, Hunger M, Li L, Olsbye U, Van Speybroeck V. Experimental and Theoretical Evidence for the Promotional Effect of Acid Sites on the Diffusion of Alkenes through Small‐Pore Zeolites. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pieter Cnudde
- Center for Molecular Modeling (CMM) Ghent University Technologiepark 46 9052 Zwijnaarde Belgium
| | - Evgeniy A. Redekop
- Center for Materials Science and Nanotechnology (SMN) Department of Chemistry University of Oslo P.O. Box 1126 Blindern 0318 Oslo Norway
| | - Weili Dai
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Natale G. Porcaro
- Department of Chemistry NIS Centre of Excellence and INSTM Reference Center University of Turin Via P. Giuria 7 10125 10 Torino Italy
| | - Michel Waroquier
- Center for Molecular Modeling (CMM) Ghent University Technologiepark 46 9052 Zwijnaarde Belgium
| | - Silvia Bordiga
- Department of Chemistry NIS Centre of Excellence and INSTM Reference Center University of Turin Via P. Giuria 7 10125 10 Torino Italy
| | - Michael Hunger
- Institute of Chemical Technology University of Stuttgart 70550 Stuttgart Germany
| | - Landong Li
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Unni Olsbye
- Center for Materials Science and Nanotechnology (SMN) Department of Chemistry University of Oslo P.O. Box 1126 Blindern 0318 Oslo Norway
| | | |
Collapse
|
6
|
Amsler J, Plessow PN, Studt F. Effect of Impurities on the Initiation of the Methanol-to-Olefins Process: Kinetic Modeling Based on Ab Initio Rate Constants. Catal Letters 2021. [DOI: 10.1007/s10562-020-03492-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
The relevance of a selection of organic impurities for the initiation of the MTO process was quantified in a kinetic model comprising 107 elementary steps with ab initio computed reaction barriers (MP2:DFT). This model includes a representative part of the autocatalytic olefin cycle as well as a direct initiation mechanism starting from methanol through CO-mediated direct C–C bond formation. We find that the effect of different impurities on the olefin evolution varies with the type of impurity and their partial pressures. The reactivity of the considered impurities for initiating the olefin cycle increases in the order formaldehyde < di-methoxy methane < CO < methyl acetate < ethanol < ethene < propene. In our kinetic model, already extremely low quantities of impurities such as ethanol lead to faster initiation than through direct C–C bond formation which only matters in complete absence of impurities.
Graphic Abstract
Collapse
|
7
|
Fečík M, Plessow PN, Studt F. Theoretical investigation of the side-chain mechanism of the MTO process over H-SSZ-13 using DFT and ab initio calculations. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00433f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The side-chain mechanism of the methanol-to-olefins process over the H-SSZ-13 acidic zeolite was investigated using periodic density functional theory with corrections from highly accurate ab intio calculations on large cluster models.
Collapse
Affiliation(s)
- Michal Fečík
- Institute of Catalysis Research and Technology
- Karlsruhe Institute of Technology
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research and Technology
- Karlsruhe Institute of Technology
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology
- Karlsruhe Institute of Technology
- 76344 Eggenstein-Leopoldshafen
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| |
Collapse
|