1
|
Oldham ML, Zuhaib Qayyum M, Kalathur RC, Rock CO, Radka CD. Cryo-EM reconstruction of oleate hydratase bound to a phospholipid membrane bilayer. J Struct Biol 2024; 216:108116. [PMID: 39151742 PMCID: PMC11385989 DOI: 10.1016/j.jsb.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Oleate hydratase (OhyA) is a bacterial peripheral membrane protein that catalyzes FAD-dependent water addition to membrane bilayer-embedded unsaturated fatty acids. The opportunistic pathogen Staphylococcus aureus uses OhyA to counteract the innate immune system and support colonization. Many Gram-positive and Gram-negative bacteria in the microbiome also encode OhyA. OhyA is a dimeric flavoenzyme whose carboxy terminus is identified as the membrane binding domain; however, understanding how OhyA binds to cellular membranes is not complete until the membrane-bound structure has been elucidated. All available OhyA structures depict the solution state of the protein outside its functional environment. Here, we employ liposomes to solve the cryo-electron microscopy structure of the functional unit: the OhyA•membrane complex. The protein maintains its structure upon membrane binding and slightly alters the curvature of the liposome surface. OhyA preferentially associates with 20-30 nm liposomes with multiple copies of OhyA dimers assembling on the liposome surface resulting in the formation of higher-order oligomers. Dimer assembly is cooperative and extends along a formed ridge of the liposome. We also solved an OhyA dimer of dimers structure that recapitulates the intermolecular interactions that stabilize the dimer assembly on the membrane bilayer as well as the crystal contacts in the lattice of the OhyA crystal structure. Our work enables visualization of the molecular trajectory of membrane binding for this important interfacial enzyme.
Collapse
Affiliation(s)
- Michael L Oldham
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - M Zuhaib Qayyum
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ravi C Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Charles O Rock
- Department of Host Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher D Radka
- Department of Host Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
2
|
Scollo F, Tempra C, Evci H, Riopedre-Fernandez M, Olżyńska A, Javanainen M, Uday A, Cebecauer M, Cwiklik L, Martinez-Seara H, Jungwirth P, Jurkiewicz P, Hof M. Can calmodulin bind to lipids of the cytosolic leaflet of plasma membranes? Open Biol 2024; 14:240067. [PMID: 39288811 PMCID: PMC11500697 DOI: 10.1098/rsob.240067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Calmodulin (CaM) is a ubiquitous calcium-sensitive messenger in eukaryotic cells. It was previously shown that CaM possesses an affinity for diverse lipid moieties, including those found on CaM-binding proteins. These facts, together with our observation that CaM accumulates in membrane-rich protrusions of HeLa cells upon increased cytosolic calcium, motivated us to perform a systematic search for unmediated CaM interactions with model lipid membranes mimicking the cytosolic leaflet of plasma membranes. A range of experimental techniques and molecular dynamics simulations prove unambiguously that CaM interacts with lipid bilayers in the presence of calcium ions. The lipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) hold the key to CaM-membrane interactions. Calcium induces an essential conformational rearrangement of CaM, but calcium binding to the headgroup of PS also neutralizes the membrane negative surface charge. More intriguingly, PE plays a dual role-it not only forms hydrogen bonds with CaM, but also destabilizes the lipid bilayer increasing the exposure of hydrophobic acyl chains to the interacting proteins. Our findings suggest that upon increased intracellular calcium concentration, CaM and the cytosolic leaflet of cellular membranes can be functionally connected.
Collapse
Affiliation(s)
- Federica Scollo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Hüseyin Evci
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Agnieszka Olżyńska
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Arunima Uday
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| |
Collapse
|
3
|
Zhao Z, Zhao L, Kong C, Zhou J, Zhou F. A review of biophysical strategies to investigate protein-ligand binding: What have we employed? Int J Biol Macromol 2024; 276:133973. [PMID: 39032877 DOI: 10.1016/j.ijbiomac.2024.133973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The protein-ligand binding frequently occurs in living organisms and plays a crucial role in the execution of the functions of proteins and drugs. It is also an indispensable part of drug discovery and screening. While the methods for investigating protein-ligand binding are diverse, each has its own objectives, strengths, and limitations, which all influence the choice of method. Many studies concentrate on one or a few specific methods, suggesting that comprehensive summaries are lacking. Therefore in this review, these methods are comprehensively summarized and are discussed in detail: prediction and simulation methods, thermal and thermodynamic methods, spectroscopic methods, methods of determining three-dimensional structures of the complex, mass spectrometry-based methods and others. It is also important to integrate these methods based on the specific objectives of the research. With the aim of advancing pharmaceutical research, this review seeks to deepen the understanding of the protein-ligand binding process.
Collapse
Affiliation(s)
- Zhen Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| | - Chenxi Kong
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China.
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China.
| |
Collapse
|
4
|
Khochare SD, Li X, Yang X, Shi Y, Feng G, Ruchhoeft P, Shih WC, Shan X. Functional Plasmonic Microscope: Characterizing the Metabolic Activity of Single Cells via Sub-nm Membrane Fluctuations. Anal Chem 2024; 96:5771-5780. [PMID: 38563229 DOI: 10.1021/acs.analchem.3c04301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metabolic abnormalities are at the center of many diseases, and the capability to film and quantify the metabolic activities of a single cell is important for understanding the heterogeneities in these abnormalities. In this paper, a functional plasmonic microscope (FPM) is used to image and measure metabolic activities without fluorescent labels at a single-cell level. The FPM can accurately image and quantify the subnanometer membrane fluctuations with a spatial resolution of 0.5 μm in real time. These active cell membrane fluctuations are caused by metabolic activities across the cell membrane. A three-dimensional (3D) morphology of the bottom cell membrane was imaged and reconstructed with FPM to illustrate the capability of the microscope for cell membrane characterization. Then, the subnanometer cell membrane fluctuations of single cells were imaged and quantified with the FPM using HeLa cells. Cell metabolic heterogeneity is analyzed based on membrane fluctuations of each individual cell that is exposed to similar environmental conditions. In addition, we demonstrated that the FPM could be used to evaluate the therapeutic responses of metabolic inhibitors (glycolysis pathway inhibitor STF 31) on a single-cell level. The result showed that the metabolic activities significantly decrease over time, but the nature of this response varies, depicting cell heterogeneity. A low-concentration dose showed a reduced fluctuation frequency with consistent fluctuation amplitudes, while the high-concentration dose showcased a decreasing trend in both cases. These results have demonstrated the capabilities of the functional plasmonic microscope to measure and quantify metabolic activities for drug discovery.
Collapse
Affiliation(s)
- Suraj D Khochare
- Advanced Imaging and Sensing Lab, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| | - Xiaoliang Li
- Advanced Imaging and Sensing Lab, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| | - Xu Yang
- Advanced Imaging and Sensing Lab, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| | - Yaping Shi
- Advanced Imaging and Sensing Lab, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| | - Guangxia Feng
- Advanced Imaging and Sensing Lab, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| | - Paul Ruchhoeft
- Advanced Imaging and Sensing Lab, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| | - Wei-Chuan Shih
- Advanced Imaging and Sensing Lab, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| | - Xiaonan Shan
- Advanced Imaging and Sensing Lab, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
5
|
Zhang L, He M, Xu Y, Guo C, Zhou C, Guan T. An ultra-sensitive biosensor based on surface plasmon resonance and weak value amplification. Front Chem 2024; 12:1382251. [PMID: 38524915 PMCID: PMC10957547 DOI: 10.3389/fchem.2024.1382251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
An ultra-sensitive phase plasmonic sensor combined with weak value amplification is proposed for the detection of IgG, as a model analyte. Phase detection is accomplished by self-interference between the p-polarization and the s-polarization of the light. With the principles of weak value amplification, a phase compensator is used to modulate the coupling strength and enhance the refractive index sensitivity of the system. On a simple Au-coated prism-coupled surface plasmon resonance (SPR) structure, the scheme, called WMSPR, achieves a refractive index sensitivity of 4.737 × 104 nm/RIU, which is about three times higher than that of the conventional phase-based approach. The proposed WMSPR biosensor gives great characteristics with a high resolution of 6.333 × 10-8 RIU and a low limit of detection (LOD) of 5.3 ng/mL. The results yield a great scope to promote the optimization of other SPR biosensors for high sensitivity.
Collapse
Affiliation(s)
- Lizhong Zhang
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Mingyi He
- School of International Education, Beijing University of Chemical Technology, Beijing, China
| | - Yang Xu
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Cuixia Guo
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian Province, China
| | - Chongqi Zhou
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Department of Physics, Tsinghua University, Beijing, China
| | - Tian Guan
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
6
|
Niedziałkowski P, Jurczak P, Orlikowska M, Wcisło A, Ryl J, Ossowski T, Czaplewska P. Phospholipid-functionalized gold electrode for cellular membrane interface studies - interactions between DMPC bilayer and human cystatin C. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184266. [PMID: 38151198 DOI: 10.1016/j.bbamem.2023.184266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
This work describes the electrochemical studies on the interactions between V57G mutant of human cystatin C (hCC V57G) and membrane bilayer immobilized on the surface of a gold electrode. The electrode was modified with 6-mercaptohexan-1-ol (MCH) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). DMPC was used as a membrane mimetic for monitoring electrochemical changes resulting from the interactions between the functionalized electrode surface and human cystatin C. The interactions between the modified electrode and hCC V57G were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a phosphate buffered saline (PBS) containing Fe(CN)63-/4- as a redox probe. The electrochemical measurements confirm that fabricated electrode is sensitive to hCC V57G at the concentration of 1 × 10-14 M. The incubation studies carried out at higher concentrations resulted in insignificant changes observed in cyclic voltammetry and electrochemical impedance spectroscopy measurements. The calculated values of surface coverage θR confirm that the electrode is equally covered at higher concentrations of hCC V57G. Measurements of wettability and surface free energy made it possible to determine the influence of individual structural elements of the modified gold electrode on its properties, and thus allowed to understand the nature of the interactions. Contact angle values confirmed the results obtained during electrochemical measurements, indicating the sensitivity of the electrode towards hCC V57G at the concentration of 1 × 10-14 M. In addition, the XPS spectra confirmed the successful anchoring of hCC V57G to the DMPC-functionalized surface.
Collapse
Affiliation(s)
- Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland.
| | - Przemysław Jurczak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland; Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Abrahama 58, Gdańsk 80-307, Poland.
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Anna Wcisło
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Institute of Nanotechnology and Materials Engineering and Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Paulina Czaplewska
- Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Abrahama 58, Gdańsk 80-307, Poland
| |
Collapse
|
7
|
Herianto S, Subramani B, Chen BR, Chen CS. Recent advances in liposome development for studying protein-lipid interactions. Crit Rev Biotechnol 2024; 44:1-14. [PMID: 36170980 DOI: 10.1080/07388551.2022.2111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Protein-lipid interactions are crucial for various cellular biological processes like intracellular signaling, membrane transport, and cytoskeletal dynamics. Therefore, studying these interactions is essential to understand and unravel their specific functions. Nevertheless, the interacting proteins of many lipids are poorly understood and still require systematic study. Liposomes are the most well-known and familiar biomimetic systems used to study protein-lipid interactions. Although liposomes have been widely used for studying protein-lipid interactions in classical methods such as the co-flotation assay (CFA), co-sedimentation assay (CSA), and flow cytometric assay (FCA), an overview of their current applications and developments in high-throughput methods is not yet available. Here, we summarize the liposome development in low and high-throughput methods to study protein-lipid interactions. Besides, a constructive comment for each platform is presented to stimulate the advancement of these technologies in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry (Chemical Biology Division), College of Science, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Boopathi Subramani
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Ruei Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Sadi M, Carvalho N, Léger C, Vitorge B, Ladant D, Guijarro JI, Chenal A. B2LiVe, a label-free 1D-NMR method to quantify the binding of amphitropic peptides or proteins to membrane vesicles. CELL REPORTS METHODS 2023; 3:100624. [PMID: 37909050 PMCID: PMC10694493 DOI: 10.1016/j.crmeth.2023.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/03/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Amphitropic proteins and peptides reversibly partition from solution to membrane, a key process that regulates their functions. Experimental approaches classically used to measure protein partitioning into lipid bilayers, such as fluorescence and circular dichroism, are hardly usable when the peptides or proteins do not exhibit significant polarity and/or conformational changes upon membrane binding. Here, we describe binding to lipid vesicles (B2LiVe), a simple, robust, and widely applicable nuclear magnetic resonance (NMR) method to determine the solution-to-membrane partitioning of unlabeled proteins or peptides. B2LiVe relies on previously described proton 1D-NMR fast-pulsing techniques. Membrane partitioning induces a large line broadening, leading to a loss of protein signals; therefore, the decrease of the NMR signal directly measures the fraction of membrane-bound protein. The method uses low polypeptide concentrations and has been validated on several membrane-interacting polypeptides, ranging from 3 to 54 kDa, with membrane vesicles of different sizes and various lipid compositions.
Collapse
Affiliation(s)
- Mirko Sadi
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France; Université de Paris Cité, 75005 Paris, France
| | - Nicolas Carvalho
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France; Université de Paris Cité, 75005 Paris, France
| | - Corentin Léger
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - Bruno Vitorge
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Daniel Ladant
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - J Iñaki Guijarro
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France.
| | - Alexandre Chenal
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France.
| |
Collapse
|
9
|
Anderluh G. A label-free approach for measuring interactions of proteins with lipid membranes. CELL REPORTS METHODS 2023; 3:100649. [PMID: 37989086 PMCID: PMC10694574 DOI: 10.1016/j.crmeth.2023.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
In this issue of Cell Reports Methods, Sadi et al. present a nuclear magnetic resonance approach for quantitative assessment of protein interactions with lipid membranes. It is sensitive, applicable to diverse membrane systems, covers a broad range of KDs, and does not require large amounts of material.
Collapse
Affiliation(s)
- Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
10
|
Angelucci CB, Sabatucci A, Bernardo AL, Kurtz A, Oddi S, Dainese E. Measuring Endocannabinoid System Interaction with Biomembranes. Methods Mol Biol 2023; 2576:425-436. [PMID: 36152207 DOI: 10.1007/978-1-0716-2728-0_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the correct interaction among the different components of the endocannabinoid (eCB) system is fundamental for a proper assessment of the function of eCBs as signaling molecules. The knowledge of how the membrane environment modulates the intracellular trafficking of the eCB system and its interacting proteins holds a huge potential in unraveling new mechanisms of its modulation. This chapter deals with the application of fluorescence resonance energy transfer technique to measure the binding affinity of eCB proteins to model membranes (i.e., large unilamellar vesicles, LUVs). In particular, we describe in detail the paradigmatic example of the interaction of rat recombinant fatty acid amide hydrolase with LUVs constituted of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine.
Collapse
Affiliation(s)
| | - Annalaura Sabatucci
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ana Lia Bernardo
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alexandrine Kurtz
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | - Enrico Dainese
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.
| |
Collapse
|
11
|
He P, Faris S, Sagabala RS, Datta P, Xu Z, Callahan B, Wang C, Boivin B, Zhang F, Linhardt RJ. Cholesterol Chip for the Study of Cholesterol-Protein Interactions Using SPR. BIOSENSORS 2022; 12:788. [PMID: 36290926 PMCID: PMC9599816 DOI: 10.3390/bios12100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022]
Abstract
Cholesterol, an important lipid in animal membranes, binds to hydrophobic pockets within many soluble proteins, transport proteins and membrane bound proteins. The study of cholesterol-protein interactions in aqueous solutions is complicated by cholesterol's low solubility and often requires organic co-solvents or surfactant additives. We report the synthesis of a biotinylated cholesterol and immobilization of this derivative on a streptavidin chip. Surface plasmon resonance (SPR) was then used to measure the kinetics of cholesterol interaction with cholesterol-binding proteins, hedgehog protein and tyrosine phosphatase 1B.
Collapse
Affiliation(s)
- Peng He
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shannon Faris
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Reddy Sudheer Sagabala
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Payel Datta
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Zihan Xu
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Brian Callahan
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Chunyu Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Benoit Boivin
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Departments of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Departments of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
12
|
Characterization of Protein-Membrane Interactions in Yeast Autophagy. Cells 2022; 11:cells11121876. [PMID: 35741004 PMCID: PMC9221364 DOI: 10.3390/cells11121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells rely on autophagy to degrade cytosolic material and maintain homeostasis. During autophagy, content to be degraded is encapsulated in double membrane vesicles, termed autophagosomes, which fuse with the yeast vacuole for degradation. This conserved cellular process requires the dynamic rearrangement of membranes. As such, the process of autophagy requires many soluble proteins that bind to membranes to restructure, tether, or facilitate lipid transfer between membranes. Here, we review the methods that have been used to investigate membrane binding by the core autophagy machinery and additional accessory proteins involved in autophagy in yeast. We also review the key experiments demonstrating how each autophagy protein was shown to interact with membranes.
Collapse
|
13
|
A Novel Strategy for Regulating mRNA's Degradation via Interfering the AUF1's Binding to mRNA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103182. [PMID: 35630659 PMCID: PMC9143527 DOI: 10.3390/molecules27103182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
The study on the mechanism and kinetics of mRNA degradation provides a new vision for chemical intervention on protein expression. The AU enrichment element (ARE) in mRNA 3′-UTR can be recognized and bound by the ARE binding protein (AU-rich Element factor (AUF1) to recruit RNase for degradation. In the present study, we proposed a novel strategy for expression regulation that interferes with the AUF1-RNA binding. A small-molecule compound, JNJ-7706621, was found to bind AUF1 protein and inhibit mRNA degradation by screening the commercial compound library. We discovered that JNJ-7706621 could inhibit the expression of AUF1 targeted gene IL8, an essential pro-inflammatory factor, by interfering with the mRNA homeostatic state. These studies provide innovative drug design strategies to regulate mRNA homeostasis.
Collapse
|
14
|
Jin R, Cao R, Baumgart T. Curvature dependence of BAR protein membrane association and dissociation kinetics. Sci Rep 2022; 12:7676. [PMID: 35538113 PMCID: PMC9091223 DOI: 10.1038/s41598-022-11221-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
BAR (Bin/Amphiphysin/Rvs) domain containing proteins function as lipid bilayer benders and curvature sensors, and they contribute to membrane shaping involved in cell signaling and metabolism. The mechanism for their membrane shape sensing has been investigated by both equilibrium binding and kinetic studies. In prior research, stopped-flow spectroscopy has been used to deduce a positive dependence on membrane curvature for the binding rate constant, kon, of a BAR protein called endophilin. However, the impact of bulk diffusion of endophilin, on the kinetic binding parameters has not been thoroughly considered. Employing similar methods, and using lipid vesicles of multiple sizes, we obtained a linear dependence of kon on vesicle curvature. However, we found that the observed relation can be explained without considering the local curvature sensing ability of endophilin in the membrane association process. In contrast, the diffusion-independent unbinding rate constant (koff) obtained from stopped-flow measurements shows a negative dependence on membrane curvature, which is controlled/mediated by endophilin-membrane interactions. This latter dependency, in addition to protein-protein interactions on the membrane, explains the selective binding of BAR proteins to highly curved membranes in equilibrium binding experiments.
Collapse
Affiliation(s)
- Rui Jin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Cao
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.,Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Schönfeldová T, Okur HI, Vezočnik V, Iacovache I, Cao C, Dal Peraro M, Maček P, Zuber B, Roke S. Ultrasensitive Label-Free Detection of Protein-Membrane Interaction Exemplified by Toxin-Liposome Insertion. J Phys Chem Lett 2022; 13:3197-3201. [PMID: 35377651 PMCID: PMC9014461 DOI: 10.1021/acs.jpclett.1c04011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Measuring the high-affinity binding of proteins to liposome membranes remains a challenge. Here, we show an ultrasensitive and direct detection of protein binding to liposome membranes using high throughput second harmonic scattering (SHS). Perfringolysin O (PFO), a pore-forming toxin, with a highly membrane selective insertion into cholesterol-rich membranes is used. PFO inserts only into liposomes with a cholesterol concentration >30%. Twenty mole-percent cholesterol results in neither SHS-signal deviation nor pore formation as seen by cryo-electron microscopy of PFO and liposomes. PFO inserts into cholesterol-rich membranes of large unilamellar vesicles in an aqueous solution with Kd = (1.5 ± 0.2) × 10-12 M. Our results demonstrate a promising approach to probe protein-membrane interactions below sub-picomolar concentrations in a label-free and noninvasive manner on 3D systems. More importantly, the volume of protein sample is ultrasmall (<10 μL). These findings enable the detection of low-abundance proteins and their interaction with membranes.
Collapse
Affiliation(s)
- T. Schönfeldová
- Laboratory
for fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - H. I. Okur
- Laboratory
for fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Department
of Chemistry and National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - V. Vezočnik
- Department
of Biology, Biotechnical Faculty, University
of Ljubljana, Jamnikarjeva 101, Ljubljana 1000, Slovenia
| | - I. Iacovache
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - C. Cao
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - M. Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - P. Maček
- Department
of Biology, Biotechnical Faculty, University
of Ljubljana, Jamnikarjeva 101, Ljubljana 1000, Slovenia
| | - B. Zuber
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - S. Roke
- Laboratory
for fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- Institute
of Materials Science (IMX) and Lausanne Centre for Ultrafast Science
(LACUS), École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
16
|
Pirc K, Clifton LA, Yilmaz N, Saltalamacchia A, Mally M, Snoj T, Žnidaršič N, Srnko M, Borišek J, Parkkila P, Albert I, Podobnik M, Numata K, Nürnberger T, Viitala T, Derganc J, Magistrato A, Lakey JH, Anderluh G. An oomycete NLP cytolysin forms transient small pores in lipid membranes. SCIENCE ADVANCES 2022; 8:eabj9406. [PMID: 35275729 PMCID: PMC8916740 DOI: 10.1126/sciadv.abj9406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/21/2022] [Indexed: 05/31/2023]
Abstract
Microbial plant pathogens secrete a range of effector proteins that damage host plants and consequently constrain global food production. Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) are produced by numerous phytopathogenic microbes that cause important crop diseases. Many NLPs are cytolytic, causing cell death and tissue necrosis by disrupting the plant plasma membrane. Here, we reveal the unique molecular mechanism underlying the membrane damage induced by the cytotoxic model NLP. This membrane disruption is a multistep process that includes electrostatic-driven, plant-specific lipid recognition, shallow membrane binding, protein aggregation, and transient pore formation. The NLP-induced damage is not caused by membrane reorganization or large-scale defects but by small membrane ruptures. This distinct mechanism of lipid membrane disruption is highly adapted to effectively damage plant cells.
Collapse
Affiliation(s)
- Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Luke A. Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, Oxford OX11 OQX, UK
| | - Neval Yilmaz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | | | - Mojca Mally
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marija Srnko
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Jure Borišek
- Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Petteri Parkkila
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Isabell Albert
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
- Molecular Plant Physiology, FAU Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Jure Derganc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Chair of Microprocess Engineering and Technology—COMPETE, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Alessandra Magistrato
- International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy
- National Research Council Institute of Material (CNR-IOM), 34136 Trieste, Italy
| | - Jeremy H. Lakey
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20:5790-5812. [DOI: 10.1016/j.csbj.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
|
18
|
Jung V, Roger K, Chhuon C, Pannetier L, Lipecka J, Gomez JS, Chappert P, Charbit A, Guerrera IC. BLI-MS: Combining biolayer interferometry and mass spectrometry. Proteomics 2021; 22:e2100031. [PMID: 34958708 DOI: 10.1002/pmic.202100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Biolayer Interferometry (BLI) is a technology which allows to study the affinity between two interacting macro-molecules and to visualize their kinetic of interaction in real time. In this work we combine BLI interaction measurement with mass spectrometry in order to identify the proteins interacting with the bait. We provide for the first time the proof of concept of the feasibility of BLI-MS in complex biological mixtures. Data are available via ProteomeXchange with the identifier PXD019440. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vincent Jung
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Kévin Roger
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Cerina Chhuon
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Louise Pannetier
- Université de Paris, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Joanna Lipecka
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Josué Sulub Gomez
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Pascal Chappert
- Université de Paris, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
- INSERM U955, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Alain Charbit
- Université de Paris, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| |
Collapse
|
19
|
Britt HM, Cragnolini T, Thalassinos K. Integration of Mass Spectrometry Data for Structural Biology. Chem Rev 2021; 122:7952-7986. [PMID: 34506113 DOI: 10.1021/acs.chemrev.1c00356] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mass spectrometry (MS) is increasingly being used to probe the structure and dynamics of proteins and the complexes they form with other macromolecules. There are now several specialized MS methods, each with unique sample preparation, data acquisition, and data processing protocols. Collectively, these methods are referred to as structural MS and include cross-linking, hydrogen-deuterium exchange, hydroxyl radical footprinting, native, ion mobility, and top-down MS. Each of these provides a unique type of structural information, ranging from composition and stoichiometry through to residue level proximity and solvent accessibility. Structural MS has proved particularly beneficial in studying protein classes for which analysis by classic structural biology techniques proves challenging such as glycosylated or intrinsically disordered proteins. To capture the structural details for a particular system, especially larger multiprotein complexes, more than one structural MS method with other structural and biophysical techniques is often required. Key to integrating these diverse data are computational strategies and software solutions to facilitate this process. We provide a background to the structural MS methods and briefly summarize other structural methods and how these are combined with MS. We then describe current state of the art approaches for the integration of structural MS data for structural biology. We quantify how often these methods are used together and provide examples where such combinations have been fruitful. To illustrate the power of integrative approaches, we discuss progress in solving the structures of the proteasome and the nuclear pore complex. We also discuss how information from structural MS, particularly pertaining to protein dynamics, is not currently utilized in integrative workflows and how such information can provide a more accurate picture of the systems studied. We conclude by discussing new developments in the MS and computational fields that will further enable in-cell structural studies.
Collapse
Affiliation(s)
- Hannah M Britt
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
20
|
Belkilani M, Shokouhi M, Farre C, Chevalier Y, Minot S, Bessueille F, Abdelghani A, Jaffrezic-Renault N, Chaix C. Surface Plasmon Resonance Monitoring of Mono-Rhamnolipid Interaction with Phospholipid-Based Liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7975-7985. [PMID: 34170134 DOI: 10.1021/acs.langmuir.1c00846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interactions of mono-rhamnolipids (mono-RLs) with model membranes were investigated through a biomimetic approach using phospholipid-based liposomes immobilized on a gold substrate and also by the multiparametric surface plasmon resonance (MP-SPR) technique. Biotinylated liposomes were bound onto an SPR gold chip surface coated with a streptavidin layer. The resulting MP-SPR signal proved the efficient binding of the liposomes. The thickness of the liposome layer calculated by modeling the MP-SPR signal was about 80 nm, which matched the average diameter of the liposomes. The mono-RL binding to the film of the phospholipid liposomes was monitored by SPR and the morphological changes of the liposome layer were assessed by modeling the SPR signal. We demonstrated the capacity of the MP-SPR technique to characterize the different steps of the liposome architecture evolution, i.e., from a monolayer of phospholipid liposomes to a single phospholipid bilayer induced by the interaction with mono-RLs. Further washing treatment with Triton X-100 detergent left a monolayer of phospholipid on the surface. As a possible practical application, our method based on a biomimetic membrane coupled to an SPR measurement proved to be a robust and sensitive analytical tool for the detection of mono-RLs with a limit of detection of 2 μg mL-1.
Collapse
Affiliation(s)
- Meryem Belkilani
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
- ENSIT, University of Tunis, Avenue Taha Hussein, Montfleury, 1008 Tunis, Tunisia
- INSAT, Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, University of Carthage, 1080 Charguia Cedex, Tunisia
| | - Maryam Shokouhi
- Department of chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Carole Farre
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Yves Chevalier
- CNRS, Claude Bernard Lyon1 University, University of Lyon, LAGEPP, 43 Bd 11 Novembre, F-69622 Villeurbanne, France
| | - Sylvain Minot
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - François Bessueille
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Adnane Abdelghani
- INSAT, Research Unit of Nanobiotechnology and Valorisation of Medicinal Plants, University of Carthage, 1080 Charguia Cedex, Tunisia
| | - Nicole Jaffrezic-Renault
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Carole Chaix
- CNRS, Claude Bernard Lyon 1 University, Institute of Analytical Sciences, University of Lyon, 5 rue de la Doua, F-69100 Villeurbanne, France
| |
Collapse
|
21
|
Liu CY, Sun YY, Jia YQ, Geng XQ, Pan LC, Jiang W, Xie BY, Zhu ZY. Effect of steam explosion pretreatment on the structure and bioactivity of Ampelopsis grossedentata polysaccharides. Int J Biol Macromol 2021; 185:194-205. [PMID: 34166690 DOI: 10.1016/j.ijbiomac.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023]
Abstract
Steam explosion (SE) was a friendly environmentally pretreatment method. In this study, the effect of steam explosion (SE) pretreatment on structure and α-glucosidase inhibitory activity of Ampelopsis grossedentata polysaccharides was evaluated. Two novel polysaccharides (AGP and AGP-SE) were extracted, isolated, purified and analyzed by NMR, FT-IR and methylation. The results indicated that AGP mainly consisted of Rha, Xyl, Glc, and Ara with a molecular weight of 2.74 × 103 kDa and AGP-SE mainly consisted of Man, Ara, and Gal with a molecular weight of 2.14 × 103 kDa. Furthermore, the backbone of AGP and AGP-SE were mainly composed of 5)-Araf-(1→, -Glcp-(1→, 6)-Glcp-(1→, 6)-Galp-(1→, 3,6)-Manp-(1→, and 2,3,6)-Glcp-(1→. Finally, we demonstrated that all polysaccharides exhibited obviously α-glucosidase inhibition activity and mixed type inhibition. AGP-SE had better α-glucosidase inhibition activity and the binding affinity KD on α-glucosidase by using Surface Plasmon Resonance (SPR) than AGP. Overall, SE pretreatment is an effective method for extracting polysaccharide and provides a new idea into the improvement of biological activity.
Collapse
Affiliation(s)
- Chun-Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yang-Yang Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yun-Qin Jia
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xue-Qing Geng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Li-Chao Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Jiang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bei-Yu Xie
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
22
|
Crystal structure of RahU, an aegerolysin protein from the human pathogen Pseudomonas aeruginosa, and its interaction with membrane ceramide phosphorylethanolamine. Sci Rep 2021; 11:6572. [PMID: 33753805 PMCID: PMC7985367 DOI: 10.1038/s41598-021-85956-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Aegerolysins are proteins produced by bacteria, fungi, plants and protozoa. The most studied fungal aegerolysins share a common property of interacting with membranes enriched with cholesterol in combination with either sphingomyelin or ceramide phosphorylethanolamine (CPE), major sphingolipids in the cell membranes of vertebrates and invertebrates, respectively. However, genome analyses show a particularly high frequency of aegerolysin genes in bacteria, including the pathogenic genera Pseudomonas and Vibrio; these are human pathogens of high clinical relevance and can thrive in a variety of other species. The knowledge on bacterial aegerolysin-lipid interactions is scarce. We show that Pseudomonas aeruginosa aegerolysin RahU interacts with CPE, but not with sphingomyelin-enriched artificial membranes, and that RahU interacts with the insect cell line producing CPE. We report crystal structures of RahU alone and in complex with tris(hydroxymethyl)aminomethane (Tris), which, like the phosphorylethanolamine head group of CPE, contains a primary amine. The RahU structures reveal that the two loops proximal to the amino terminus form a cavity that accommodates Tris, and that the flexibility of these two loops is important for this interaction. We show that Tris interferes with CPE-enriched membranes for binding to RahU, implying on the importance of the ligand cavity between the loops and its proximity in RahU membrane interaction. We further support this by studying the interaction of single amino acid substitution mutants of RahU with the CPE-enriched membranes. Our results thus represent a starting point for a better understanding of the role of P. aeruginosa RahU, and possibly other bacterial aegerolysins, in bacterial interactions with other organisms.
Collapse
|
23
|
Aden S, Snoj T, Anderluh G. The use of giant unilamellar vesicles to study functional properties of pore-forming toxins. Methods Enzymol 2021; 649:219-251. [PMID: 33712188 DOI: 10.1016/bs.mie.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pore-forming toxins (PFTs) act upon lipid membranes and appropriate model systems are of great importance in researching these proteins. Giant unilamellar vesicles (GUVs) are an excellent model membrane system to study interactions between lipids and proteins. Their main advantage is the size comparable to cells, which means that GUVs can be observed directly under the light microscope. Many PFTs properties can be studied by using GUVs, such as binding specificity, membrane reorganization upon protein binding and oligomerization, pore properties and mechanism of pore formation. GUVs also represent a good model for biotechnological approaches, e.g., in applications in synthetic biology and medicine. Each research area has its own demands for GUVs properties, so several different approaches for GUVs preparations have been developed and will be discussed in this chapter.
Collapse
Affiliation(s)
- Saša Aden
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tina Snoj
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Mieda S. Analysis of the Interaction between a Protein and Polymer Membranes Using Steered Molecular Dynamics Simulation to Interpret the Fouling Behavior. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shunsuke Mieda
- Platform Laboratory for Science & Technology, Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan
| |
Collapse
|
25
|
Zhong P, Liu CH, Chen YT, Yu TY. The Study of HIV-1 Vpr-Membrane and Vpr-hVDAC-1 Interactions by Graphene Field-Effect Transistor Biosensors. ACS APPLIED BIO MATERIALS 2020; 3:6351-6357. [PMID: 35021765 DOI: 10.1021/acsabm.0c00783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The viral protein R (Vpr) of human immunodeficiency virus 1 (HIV-1) is involved in many cellular processes during the viral life cycle; however, its associated mechanisms remain unclear. Here, we designed an Escherichia coli expression construct to achieve a milligram yield of recombinant Vpr. In addition, we fabricated a graphene field-effect transistor (G-FET) biosensor, with the modification of a supported lipid bilayer (SLB), to study the interaction between Vpr and its interaction partners. The Dirac point of the SLB/G-FET was observed to shift in response to the binding of Vpr to the SLB. By fitting the normalized shift of the Dirac point as a function of Vpr concentration to the Langmuir adsorption isotherm equation, we could extract the dissociation constant (Kd) to quantify the Vpr binding affinity. When the 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) membrane was used as the SLB, the dissociation constant was determined to be 9.6 ± 2.1 μM. In contrast, only a slight shift of the Dirac point was observed in response to the addition of Vpr when the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane was used as the SLB. Taking advantage of the much weaker binding of Vpr to the DOPC membrane, we prepared a human voltage-dependent anion channel isoform 1 (hVDAC-1)-embedded DOPC membrane as the SLB for the G-FET and used it to determine the dissociation constant to be 5.1 ± 0.9 μM. In summary, using the clinically relevant Vpr protein as an example, we demonstrated that an SLB/G-FET biosensor is a suitable tool for studying the interaction between a membrane-associated protein and its interaction partners.
Collapse
Affiliation(s)
- Peibin Zhong
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chun-Hao Liu
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115 Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu 30013, Taiwan
| | - Yit-Tsong Chen
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
26
|
Mamer SB, Page P, Murphy M, Wang J, Gallerne P, Ansari A, Imoukhuede PI. The Convergence of Cell-Based Surface Plasmon Resonance and Biomaterials: The Future of Quantifying Bio-molecular Interactions-A Review. Ann Biomed Eng 2020; 48:2078-2089. [PMID: 31811474 PMCID: PMC8637426 DOI: 10.1007/s10439-019-02429-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022]
Abstract
Cell biology is driven by complex networks of biomolecular interactions. Characterizing the kinetic and thermodynamic properties of these interactions is crucial to understanding their role in different physiological processes. Surface plasmon resonance (SPR)-based approaches have become a key tool in quantifying biomolecular interactions, however conventional approaches require isolating the interacting components from the cellular system. Cell-based SPR approaches have recently emerged, promising to enable precise measurements of biomolecular interactions within their normal biological context. Two major approaches have been developed, offering their own advantages and limitations. These approaches currently lack a systematic exploration of 'best practices' like those existing for traditional SPR experiments. Toward this end, we describe the two major approaches, and identify the experimental parameters that require exploration, and discuss the experimental considerations constraining the optimization of each. In particular, we discuss the requirements of future biomaterial development needed to advance the cell-based SPR technique.
Collapse
Affiliation(s)
- Spencer B Mamer
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | - Jiaojiao Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pierrick Gallerne
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Ecole Centrale de Lille, Villeneuve d'Ascq, Hauts-De-France, France
| | - Ali Ansari
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P I Imoukhuede
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
27
|
Surface Sensitive Analysis Device using Model Membrane and Challenges for Biosensor-chip. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-019-4110-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Stulz A, Breitsamer M, Winter G, Heerklotz H. Primary and Secondary Binding of Exenatide to Liposomes. Biophys J 2020; 118:600-611. [PMID: 31972156 PMCID: PMC7002983 DOI: 10.1016/j.bpj.2019.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
The interactions of exenatide, a Trp-containing peptide used as a drug to treat diabetes, with liposomes were studied by isothermal titration calorimetry (ITC), tryptophan (Trp) fluorescence, and microscale thermophoresis measurements. The results are not only important for better understanding the release of this specific drug from vesicular phospholipid gel formulations but describe a general scenario as described before for various systems. This study introduces a model to fit these data on the basis of primary and secondary peptide-lipid interactions. Finally, resolving apparent inconsistencies between different methods aids the design and critical interpretation of binding experiments in general. Our results show that the net cationic exenatide adsorbs electrostatically to liposomes containing anionic diacyl phosphatidylglycerol lipids (PG); however, the ITC data could not properly be fitted by any established model. The combination of electrostatic adsorption of exenatide to the membrane surface and its self-association (Kd = 46 μM) suggested the possibility of secondary binding of peptide to the first, primarily (i.e., lipid-) bound peptide layer. A global fit of the ITC data validated this model and suggested one peptide to bind primarily per five PG molecules with a Kd ≈ 0.2 μM for PC/PG 1:1 and 0.6 μM for PC/PG 7:3 liposomes. Secondary binding shows a weaker affinity and a less exothermic or even endothermic enthalpy change. Depending on the concentration of liposomes, secondary binding may also lead to liposomal aggregation as detected by dynamic light-scattering measurements. ITC quantifies primary and secondary binding separately, whereas microscale thermophoresis and Trp fluorescence represent a summary or average of both effects, possibly with the fluorescence data showing somewhat greater weighting of primary binding. Systems with secondary peptide-peptide association within the membrane are mathematically analogous to the adsorption discussed here.
Collapse
Affiliation(s)
- Anja Stulz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Michaela Breitsamer
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gerhard Winter
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
29
|
Protocol for Investigating the Interactions Between Intrinsically Disordered Proteins and Membranes by Neutron Reflectometry. Methods Mol Biol 2020; 2141:569-584. [PMID: 32696378 DOI: 10.1007/978-1-0716-0524-0_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several intrinsically disordered proteins (IDPs) exhibit high affinity for lipid membranes. Among the different biophysical methods to probe protein-lipid interaction, neutron reflectometry (NR) can provide direct and structural detailed information on the location of the IDP with respect to the membrane. Supported lipid bilayers are commonly used as cell membrane models in such experiments. NR measurements can be collected on the supported lipid bilayer before and after the interaction with the IDP to characterize whether the protein molecules are mainly located on the membrane surface (interaction with the lipid headgroups), are penetrating into the hydrophobic region of the membrane (interaction with the lipid acyl chains), or are not interacting at all with the membrane. The lipid composition of the supported lipid bilayer can easily be tuned; hence the NR experiments can be designed to investigate selective IDP-lipid interactions.This chapter will describe the fundamental steps for performing an NR experiment and the subsequent data analysis aimed at characterizing IDP-lipid bilayer interactions. The specific case of an intrinsically disordered region (IDR) from the membrane protein Na+/H+ exchanger isoform 1 (NHE1) will be used as an example, but the same protocol can be easily adapted to other IDPs.
Collapse
|
30
|
Mendes B, Almeida JR, Vale N, Gomes P, Gadelha FR, Da Silva SL, Miguel DC. Potential use of 13-mer peptides based on phospholipase and oligoarginine as leishmanicidal agents. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108612. [PMID: 31454702 DOI: 10.1016/j.cbpc.2019.108612] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022]
Abstract
Phospholipase A2 toxins present in snake venoms interact with biological membranes and serve as structural models for the design of small peptides with anticancer, antibacterial and antiparasitic properties. Oligoarginine peptides are capable of increasing cell membrane permeability (cell penetrating peptides), and for this reason are interesting delivery systems for compounds of pharmacological interest. Inspired by these two families of bioactive molecules, we have synthesized two 13-mer peptides as potential antileishmanial leads gaining insights into structural features useful for the future design of more potent peptides. The peptides included p-Acl, reproducing a natural segment of a Lys49 PLA2 from Agkistrodon contortrix laticinctus snake venom, and its p-AclR7 analogue where all seven lysine residues were replaced by arginines. Both peptides were active against promastigote and amastigote forms of Leishmania (L.) amazonensis and L. (L.) infantum, while displaying low cytotoxicity for primary murine macrophages. Spectrofluorimetric studies suggest that permeabilization of the parasite's cell membrane is the probable mechanism of action of these biomolecules. Relevantly, the engineered peptide p-AclR7 was more active in both life stages of Leishmania and induced higher rates of ethidium bromide incorporation than its native template p-Acl. Taken together, the results suggest that short peptides based on phospholipase toxins are potential scaffolds for development of antileishmanial candidates. Moreover, specific amino acid substitutions, such those herein employed, may enhance the antiparasitic action of these cationic peptides, encouraging their future biomedical applications.
Collapse
Affiliation(s)
- Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José R Almeida
- Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Nuno Vale
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia da Universidade do Porto, Portugal; IPATIMUP/Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Fernanda R Gadelha
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Saulo L Da Silva
- Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca/Azuay, Ecuador.; Centro de Innovación de la Salud - EUS/EP, Cuenca/Azuay, Ecuador
| | - Danilo C Miguel
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
31
|
Ryu YS, Yun H, Chung T, Suh JH, Kim S, Lee K, Wittenberg NJ, Oh SH, Lee B, Lee SD. Kinetics of lipid raft formation at lipid monolayer-bilayer junction probed by surface plasmon resonance. Biosens Bioelectron 2019; 142:111568. [PMID: 31442945 DOI: 10.1016/j.bios.2019.111568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
A label-free, non-dispruptive, and real-time analytical device to monitor the dynamic features of biomolecules and their interactions with neighboring molecules is an essential prerequisite for biochip- and diagonostic assays. To explore one of the central questions on the lipid-lipid interactions in the course of the liquid-ordered (lo) domain formation, called rafts, we developed a method of reconstituting continuous but spatially heterogeneous lipid membrane platforms with molayer-bilayer juntions (MBJs) that enable to form the lo domains in a spatiotemporally controlled manner. This allows us to detect the time-lapse dynamics of the lipid-lipid interactions during raft formation and resultant membrane phase changes together with the raft-associated receptor-ligand binding through the surface plasmon resonance (SPR). For cross-validation, using epifluorescence microscopy, we demonstrated the underlying mechanisms for raft formations that the infiltration of cholesterols into the sphingolipid-enriched domains plays a crucial roles in the membrane phase-separation. Our membrane platform, being capable of monitoring dynamic interactions among lipids and performing the systematic optical analysis, will unveil physiological roles of cholesterols in a variety of biological events.
Collapse
Affiliation(s)
- Yong-Sang Ryu
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Sensor System Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, 02792, South Korea
| | - Hansik Yun
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Taerin Chung
- Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jeng-Hun Suh
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sungho Kim
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyookeun Lee
- Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Nathan J Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St SE, Minneapolis, MN, 55455, USA; Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St SE, Minneapolis, MN, 55455, USA
| | - Byoungho Lee
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sin-Doo Lee
- School of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
32
|
Das T, Eliezer D. Membrane interactions of intrinsically disordered proteins: The example of alpha-synuclein. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:879-889. [PMID: 31096049 PMCID: PMC6661188 DOI: 10.1016/j.bbapap.2019.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
Peripheral membrane proteins associate reversibly with biological membranes that, compared to protein binding partners, are structurally labile and devoid of specific binding pockets. Membranes in different subcellular compartments vary primarily in their chemical composition and physical properties, and recognition of these features is therefore critical for allowing such proteins to engage their proper membrane targets. Intrinsically disordered proteins (IDPs) are well-suited to accomplish this task using highly specific and low- to moderate-affinity interactions governed by recognition principles that are both similar to and different from those that mediate the membrane interactions of rigid proteins. IDPs have also evolved multiple mechanisms to regulate membrane (and other) interactions and achieve their impressive functional diversity. Moreover, IDP-membrane interactions may have a kinetic advantage in fast processes requiring rapid control of such interactions, such as synaptic transmission or signaling. Herein we review the biophysics, regulation and functional implications of IDP-membrane interactions and include a brief overview of some of the methods that can be used to study such interactions. At each step, we use the example of alpha-synuclein, a protein involved in the pathogenesis of Parkinson's disease and one of the best characterized membrane-binding IDP, to illustrate some of the principles discussed.
Collapse
Affiliation(s)
- Tapojyoti Das
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States of America
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
33
|
Bellich B, Distefano M, Syrgiannis Z, Bosi S, Guida F, Rizzo R, Brady JW, Cescutti P. The polysaccharide extracted from the biofilm of Burkholderia multivorans strain C1576 binds hydrophobic species and exhibits a compact 3D-structure. Int J Biol Macromol 2019; 136:944-950. [PMID: 31229548 PMCID: PMC6711379 DOI: 10.1016/j.ijbiomac.2019.06.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/28/2022]
Abstract
Microorganisms often grow in communities called biofilms where cells are imbedded in a complex self-produced biopolymeric matrix composed mainly of polysaccharides, proteins, and DNA. This matrix, together with cell proximity, confers many advantages to these microbial communities, but also constitutes a serious concern when biofilms develop in human tissues or on implanted prostheses. Although polysaccharides are considered the main constituents of the matrices, their specific role needs to be clarified. We have investigated the chemical and morphological properties of the polysaccharide extracted from biofilms produced by the C1576 reference strain of the opportunistic pathogen Burkholderia multivorans, which causes lung infections in cystic fibrosis patients. The aim of the present study is the definition of possible interactions of the polysaccharide and the three-dimensional conformation of its chain within the biofilm matrix. Surface plasmon resonance experiments confirmed the ability of the polysaccharide to bind hydrophobic molecules, due to the presence of rhamnose dimers in its primary structure. In addition, atomic force microscopy studies evidenced an extremely compact three-dimensional structure of the polysaccharide which may form aggregates, suggesting a novel view of its structural role into the biofilm matrix.
Collapse
Affiliation(s)
- Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Marco Distefano
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Zois Syrgiannis
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Filomena Guida
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - John W Brady
- Department of Food Sciences, Cornell University, M10 Stocking Hall, Ithaca, NY 14853-5701, USA
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
34
|
Novak M, Čepin U, Hodnik V, Narat M, Jamnik M, Kraševec N, Sepčić K, Anderluh G. Functional studies of aegerolysin and MACPF-like proteins in Aspergillus niger. Mol Microbiol 2019; 112:1253-1269. [PMID: 31376198 DOI: 10.1111/mmi.14360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2019] [Indexed: 12/21/2022]
Abstract
Proteins of the aegerolysin family have a high abundance in Fungi. Due to their specific binding to membrane lipids, and their membrane-permeabilization potential in concert with protein partner(s) belonging to a membrane-attack-complex/perforin (MACPF) superfamily, they were proposed as useful tools in different biotechnological and biomedical applications. In this work, we performed functional studies on expression of the genes encoding aegerolysin and MACPF-like proteins in Aspergillus niger. Our results suggest the sporulation process being crucial for strong induction of the expression of all these genes. However, deletion of either of the aegerolysin genes did not influence the growth, development, sporulation efficiency and phenotype of the mutants, indicating that aegerolysins are not key factors in the sporulation process. In all our expression studies we noticed a strong correlation in the expression of one aegerolysin and MACPF-like gene. Aegerolysins were confirmed to be secreted from the fungus. We also showed the specific interaction of a recombinant A. niger aegerolysin with an invertebrate-specific membrane sphingolipid. Moreover, using this protein labelled with mCherry we successfully stained insect cells membranes containing this particular sphingolipid. Our combined results suggest, that aegerolysins in this species, and probably also in other aspergilli, could be involved in defence against predators.
Collapse
Affiliation(s)
- Maruša Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Čepin
- BioSistemika Ltd and National Institute of Biology, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Narat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Jamnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Nada Kraševec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
35
|
Xue J, Bai Y, Liu H. Hybrid methods of surface plasmon resonance coupled to mass spectrometry for biomolecular interaction analysis. Anal Bioanal Chem 2019; 411:3721-3729. [DOI: 10.1007/s00216-019-01906-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 01/02/2023]
|
36
|
Marson D, Guida F, Şologan M, Boccardo S, Pengo P, Perissinotto F, Iacuzzi V, Pellizzoni E, Polizzi S, Casalis L, Pasquato L, Pacor S, Tossi A, Posocco P. Mixed Fluorinated/Hydrogenated Self-Assembled Monolayer-Protected Gold Nanoparticles: In Silico and In Vitro Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900323. [PMID: 30941901 DOI: 10.1002/smll.201900323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Indexed: 05/23/2023]
Abstract
Gold nanoparticles (AuNPs) covered with mixtures of immiscible ligands present potentially anisotropic surfaces that can modulate their interactions at complex nano-bio interfaces. Mixed, self-assembled, monolayer (SAM)-protected AuNPs, prepared with incompatible hydrocarbon and fluorocarbon amphiphilic ligands, are used here to probe the molecular basis of surface phase separation and disclose the role of fluorinated ligands on the interaction with lipid model membranes and cells, by integrating in silico and experimental approaches. These results indicate that the presence of fluorinated amphiphilic ligands enhances the membrane binding ability and cellular uptake of gold nanoparticles with respect to those coated only with hydrogenated amphiphilic ligands. For mixed monolayers, computational results suggest that ligand phase separation occurs on the gold surface, and the resulting anisotropy affects the number of contacts and adhesion energies with a membrane bilayer. This reflects in a diverse membrane interaction for NPs with different surface morphologies, as determined by surface plasmon resonance, as well as differential effects on cells, as observed by flow cytometry and confocal microscopy. Overall, limited changes in monolayer features can significantly affect NP surface interfacial properties, which, in turn, affect the interaction of SAM-AuNPs with cellular membranes and subsequent effects on cells.
Collapse
Affiliation(s)
- Domenico Marson
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Filomena Guida
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Maria Şologan
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127, Trieste, Italy
| | - Silvia Boccardo
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Paolo Pengo
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127, Trieste, Italy
| | - Fabio Perissinotto
- NanoInnovation Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Basovizza, Italy
| | - Valentina Iacuzzi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Elena Pellizzoni
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Stefano Polizzi
- Department of Molecular Science and Nanosystems, Ca' Foscari University, 30172, Venezia, Italy
- Centro di Microscopia Elettronica "G. Stevanato,", 30172, Venezia-Mestre, Italy
| | - Loredana Casalis
- NanoInnovation Laboratory, Elettra-Sincrotrone Trieste S.C.p.A, 34149, Basovizza, Italy
| | - Lucia Pasquato
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127, Trieste, Italy
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| |
Collapse
|
37
|
Glantz ST, Berlew EE, Chow BY. Synthetic cell-like membrane interfaces for probing dynamic protein-lipid interactions. Methods Enzymol 2019; 622:249-270. [PMID: 31155055 DOI: 10.1016/bs.mie.2019.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ability to rapidly screen interactions between proteins and membrane-like interfaces would aid in establishing the structure-function of protein-lipid interactions, provide a platform for engineering lipid-interacting protein tools, and potentially inform the signaling mechanisms and dynamics of membrane-associated proteins. Here, we describe the preparation and application of water-in-oil (w/o) emulsions with lipid-stabilized droplet interfaces that emulate the plasma membrane inner leaflet with tunable composition. Fluorescently labeled proteins are easily visualized in these synthetic cell-like droplets on an automated inverted fluorescence microscope, thus allowing for both rapid screening of relative binding and spatiotemporally resolved analyses of for example, protein-interface association and dissociation dynamics and competitive interactions, using commonplace instrumentation. We provide protocols for droplet formation, automated imaging assays and analysis, and the production of the positive control protein BcLOV4, a natural photoreceptor with a directly light-regulated interaction with anionic membrane phospholipids that is useful for optogenetic membrane recruitment.
Collapse
Affiliation(s)
- Spencer T Glantz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Erin E Berlew
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
38
|
Lakshman B, Messing S, Schmid EM, Clogston JD, Gillette WK, Esposito D, Kessing B, Fletcher DA, Nissley DV, McCormick F, Stephen AG, Jean-Francois FL. Quantitative biophysical analysis defines key components modulating recruitment of the GTPase KRAS to the plasma membrane. J Biol Chem 2019; 294:2193-2207. [PMID: 30559287 PMCID: PMC6369290 DOI: 10.1074/jbc.ra118.005669] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/28/2018] [Indexed: 11/06/2022] Open
Abstract
The gene encoding the GTPase KRAS is frequently mutated in pancreatic, lung, and colorectal cancers. The KRAS fraction in the plasma membrane (PM) correlates with activation of the mitogen-activated protein kinase (MAPK) pathway and subsequent cellular proliferation. Understanding KRAS's interaction with the PM is challenging given the complexity of the cellular environment. To gain insight into key components necessary for KRAS signal transduction at the PM, we used synthetic membranes such as liposomes and giant unilamellar vesicles. Using surface plasmon resonance (SPR) spectroscopy, we demonstrated that KRAS and Raf-1 proto-oncogene Ser/Thr kinase (RAF1) domains interact with these membranes primarily through electrostatic interactions with negatively charged lipids reinforced by additional interactions involving phosphatidyl ethanolamine and cholesterol. We found that the RAF1 region spanning RBD through CRD (RBDCRD) interacts with the membrane significantly more strongly than the isolated RBD or CRD domains and synergizes KRAS partitioning to the membrane. We also found that calmodulin and phosphodiesterase 6 delta (PDE6δ), but not galectin3 previously proposed to directly interact with KRAS, passively sequester KRAS and prevent it from partitioning into the PM. RAF1 RBDCRD interacted with membranes preferentially at nonraft lipid domains. Moreover, a C-terminal O-methylation was crucial for KRAS membrane localization. These results contribute to a better understanding of how the KRAS-membrane interaction is tuned by multiple factors whose identification could inform drug discovery efforts to disrupt this critical interaction in diseases such as cancer.
Collapse
Affiliation(s)
- Bindu Lakshman
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Simon Messing
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Eva M Schmid
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702
| | - William K Gillette
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Dominic Esposito
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Bailey Kessing
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Daniel A Fletcher
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Chan Zuckerberg Biohub, San Francisco, California 94158
| | - Dwight V Nissley
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Frank McCormick
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158
| | - Andrew G Stephen
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Frantz L Jean-Francois
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702,
| |
Collapse
|
39
|
Li P, Wang J, Zou Y, Sun Z, Zhang M, Geng Z, Xu W, Wang D. Interaction of Hsp90AA1 with phospholipids stabilizes membranes under stress conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:457-465. [DOI: 10.1016/j.bbamem.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 01/29/2023]
|
40
|
Šakanovič A, Hodnik V, Anderluh G. Surface Plasmon Resonance for Measuring Interactions of Proteins with Lipids and Lipid Membranes. Methods Mol Biol 2019; 2003:53-70. [PMID: 31218613 DOI: 10.1007/978-1-4939-9512-7_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface plasmon resonance (SPR) is an established method for studying molecular interactions in real time. It allows obtaining qualitative and quantitative data on interactions of proteins with lipids or lipid membranes. In most of the approaches a lipid membrane or a membrane-mimetic surface is prepared on the surface of Biacore (GE Healthcare) sensor chips HPA or L1, and the studied protein is then injected across the surface. Here we provide an overview of SPR in protein-lipid and protein-membrane interactions, different approaches described in the literature and a general protocol for conducting an SPR experiment including lipid membranes, together with some experimental considerations.
Collapse
Affiliation(s)
- Aleksandra Šakanovič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
41
|
Sugiura T, Takahashi C, Chuma Y, Fukuda M, Yamada M, Yoshida U, Nakao H, Ikeda K, Khan D, Nile AH, Bankaitis VA, Nakano M. Biophysical Parameters of the Sec14 Phospholipid Exchange Cycle. Biophys J 2018; 116:92-103. [PMID: 30580923 DOI: 10.1016/j.bpj.2018.11.3131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Sec14, the major yeast phosphatidylcholine (PC)/phosphatidylinositol (PI) transfer protein (PITP), coordinates PC and PI metabolism to facilitate an appropriate and essential lipid signaling environment for membrane trafficking from trans-Golgi membranes. The Sec14 PI/PC exchange cycle is essential for its essential biological activity, but fundamental aspects of how this PITP executes its lipid transfer cycle remain unknown. To address some of these outstanding issues, we applied time-resolved small-angle neutron scattering for the determination of protein-mediated intervesicular movement of deuterated and hydrogenated phospholipids in vitro. Quantitative analysis by small-angle neutron scattering revealed that Sec14 PI- and PC-exchange activities were sensitive to both the lipid composition and curvature of membranes. Moreover, we report that these two parameters regulate lipid exchange activity via distinct mechanisms. Increased membrane curvature promoted both membrane binding and lipid exchange properties of Sec14, indicating that this PITP preferentially acts on the membrane site with a convexly curved face. This biophysical property likely constitutes part of a mechanism by which spatial specificity of Sec14 function is determined in cells. Finally, wild-type Sec14, but not a mixture of Sec14 proteins specifically deficient in either PC- or PI-binding activity, was able to effect a net transfer of PI or PC down opposing concentration gradients in vitro.
Collapse
Affiliation(s)
- Taichi Sugiura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Chisato Takahashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yusuke Chuma
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masakazu Fukuda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Makiko Yamada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Ukyo Yoshida
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroyuki Nakao
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Keisuke Ikeda
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Danish Khan
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Aaron H Nile
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, Texas
| | - Vytas A Bankaitis
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas; Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, Texas
| | - Minoru Nakano
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
42
|
Pacor S, Guida F, Xhindoli D, Benincasa M, Gennaro R, Tossi A. Effect of targeted minimal sequence variations on the structure and biological activities of the human cathelicidin LL‐37. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sabrina Pacor
- Department of Life SciencesUniversity of Trieste, Building Q, Via Giorgieri 5 Trieste 34127 Italy
| | - Filomena Guida
- Department of Life SciencesUniversity of Trieste, Building Q, Via Giorgieri 5 Trieste 34127 Italy
| | - Daniela Xhindoli
- Department of Life SciencesUniversity of Trieste, Building Q, Via Giorgieri 5 Trieste 34127 Italy
| | - Monica Benincasa
- Department of Life SciencesUniversity of Trieste, Building Q, Via Giorgieri 5 Trieste 34127 Italy
| | - Renato Gennaro
- Department of Life SciencesUniversity of Trieste, Building Q, Via Giorgieri 5 Trieste 34127 Italy
| | - Alessandro Tossi
- Department of Life SciencesUniversity of Trieste, Building Q, Via Giorgieri 5 Trieste 34127 Italy
| |
Collapse
|
43
|
De Franceschi N, Miihkinen M, Hamidi H, Alanko J, Mai A, Picas L, Guzmán C, Lévy D, Mattjus P, Goult BT, Goud B, Ivaska J. ProLIF - quantitative integrin protein-protein interactions and synergistic membrane effects on proteoliposomes. J Cell Sci 2018; 132:jcs.214270. [PMID: 30072441 DOI: 10.1242/jcs.214270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/07/2018] [Indexed: 01/23/2023] Open
Abstract
Integrin transmembrane receptors control a wide range of biological interactions by triggering the assembly of large multiprotein complexes at their cytoplasmic interface. Diverse methods have been used to investigate interactions between integrins and intracellular proteins, and predominantly include peptide-based pulldowns and biochemical immuno-isolations from detergent-solubilised cell lysates. However, quantitative methods to probe integrin-protein interactions in a more biologically relevant context where the integrin is embedded within a lipid bilayer have been lacking. Here, we describe 'protein-liposome interactions by flow cytometry' (denoted ProLIF), a technique to reconstitute recombinant integrin transmembrane domains (TMDs) and cytoplasmic tail (CT) fragments in liposomes as individual subunits or as αβ heterodimers and, via flow cytometry, allow rapid and quantitative measurement of protein interactions with these membrane-embedded integrins. Importantly, the assay can analyse binding of fluorescent proteins directly from cell lysates without further purification steps. Moreover, the effect of membrane composition, such as PI(4,5)P2 incorporation, on protein recruitment to the integrin CTs can be analysed. ProLIF requires no specific instrumentation and can be applied to measure a broad range of membrane-dependent protein-protein interactions with the potential for high-throughput/multiplex analyses.This article has associated First Person interviews with the first authors of the paper (see doi: 10.1242/jcs.223644 and doi: 10.1242/jcs.223719).
Collapse
Affiliation(s)
- Nicola De Franceschi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR 168, 75005 Paris, France.,Sorbonne Universités, UPMC, 75005 Paris, France
| | - Mitro Miihkinen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jonna Alanko
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Anja Mai
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Laura Picas
- Institut Curie, PSL Research University, UMR 168, Centre de Recherche, 75248 Paris, France
| | - Camilo Guzmán
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Daniel Lévy
- Institut Curie, PSL Research University, UMR 168, Centre de Recherche, 75248 Paris, France
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Bruno Goud
- Institut Curie, PSL Research University, UMR 168, Centre de Recherche, 75248 Paris, France
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland .,Department of Biochemistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
44
|
Liquid crystalline bacterial outer membranes are critical for antibiotic susceptibility. Proc Natl Acad Sci U S A 2018; 115:E7587-E7594. [PMID: 30037998 DOI: 10.1073/pnas.1803975115] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is a robust, impermeable, asymmetric bilayer of outer lipopolysaccharides (LPSs) and inner phospholipids containing selective pore proteins which confer on it the properties of a molecular sieve. This structure severely limits the variety of antibiotic molecules effective against Gram-negative pathogens and, as antibiotic resistance has increased, so has the need to solve the OM permeability problem. Polymyxin B (PmB) represents those rare antibiotics which act directly on the OM and which offer a distinct starting point for new antibiotic development. Here we investigate PmB's interactions with in vitro OM models and show how the physical state of the lipid matrix of the OM is a critical factor in regulating the interaction with the antimicrobial peptide. Using neutron reflectometry and infrared spectroscopy, we reveal the structural and chemical changes induced by PmB on OM models of increasing complexity. In particular, only a tightly packed model reproduced the temperature-controlled disruption of the asymmetric lipid bilayer by PmB observed in vivo. By measuring the order of outer-leaflet LPS and inner-leaflet phospholipids, we show that PmB insertion is dependent on the phase transition of LPS from the gel to the liquid crystalline state. The demonstration of a lipid phase transition in the physiological temperature range also supports the hypothesis that bacteria grown at different temperatures adapt their LPS structures to maintain a homeoviscous OM.
Collapse
|
45
|
Abstract
The principles, strengths and limitations of several nonlinear optical (NLO) methods for characterizing biological systems are reviewed. NLO methods encompass a wide range of approaches that can be used for real-time, in-situ characterization of biological systems, typically in a label-free mode. Multiphoton excitation fluorescence (MPEF) is widely used for high-quality imaging based on electronic transitions, but lacks interface specificity. Second harmonic generation (SHG) is a parametric process that has all the virtues of the two-photon version of MPEF, yielding a signal at twice the frequency of the excitation light, which provides interface specificity. Both SHG and MPEF can provide images with high structural contrast, but they typically lack molecular or chemical specificity. Other NLO methods such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) can provide high-sensitivity imaging with chemical information since Raman active vibrations are probed. However, CARS and SRS lack interface and surface specificity. A NLO method that provides both interface/surface specificity as well as molecular specificity is vibrational sum frequency generation (SFG) spectroscopy. Vibration modes that are both Raman and IR active are probed in the SFG process, providing the molecular specificity. SFG, like SHG, is a parametric process, which provides the interface and surface specificity. SFG is typically done in the reflection mode from planar samples. This has yielded rich and detailed information about the molecular structure of biomaterial interfaces and biomolecules interacting with their surfaces. However, 2-D systems have limitations for understanding the interactions of biomolecules and interfaces in the 3-D biological environment. The recent advances made in instrumentation and analysis methods for sum frequency scattering (SFS) now present the opportunity for SFS to be used to directly study biological solutions. By detecting the scattering at angles away from the phase-matched direction even centrosymmetric structures that are isotropic (e.g., spherical nanoparticles functionalized with self-assembled monolayers or biomolecules) can be probed. Often a combination of multiple NLO methods or a combination of a NLO method with other spectroscopic methods is required to obtain a full understanding of the molecular structure and surface chemistry of biomaterials and the biomolecules that interact with them. Using the right combination methods provides a powerful approach for characterizing biological materials.
Collapse
|
46
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
47
|
Ferhan AR, Jackman JA, Park JH, Cho NJ, Kim DH. Nanoplasmonic sensors for detecting circulating cancer biomarkers. Adv Drug Deliv Rev 2018; 125:48-77. [PMID: 29247763 DOI: 10.1016/j.addr.2017.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022]
Abstract
The detection of cancer biomarkers represents an important aspect of cancer diagnosis and prognosis. Recently, the concept of liquid biopsy has been introduced whereby diagnosis and prognosis are performed by means of analyzing biological fluids obtained from patients to detect and quantify circulating cancer biomarkers. Unlike conventional biopsy whereby primary tumor cells are analyzed, liquid biopsy enables the detection of a wide variety of circulating cancer biomarkers, including microRNA (miRNA), circulating tumor DNA (ctDNA), proteins, exosomes and circulating tumor cells (CTCs). Among the various techniques that have been developed to detect circulating cancer biomarkers, nanoplasmonic sensors represent a promising measurement approach due to high sensitivity and specificity as well as ease of instrumentation and operation. In this review, we discuss the relevance and applicability of three different categories of nanoplasmonic sensing techniques, namely surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS), for the detection of different classes of circulating cancer biomarkers.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jae Hyeon Park
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, 16419, Republic of Korea.
| |
Collapse
|
48
|
|
49
|
Li P, Zhang M, Zou Y, Sun Z, Sun C, Geng Z, Xu W, Wang D. Interaction of heat shock protein 90 B1 (Hsp90B1) with liposome reveals its potential role in protection the integrity of lipid membranes. Int J Biol Macromol 2018; 106:1250-1257. [DOI: 10.1016/j.ijbiomac.2017.08.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 01/28/2023]
|
50
|
Sanmartí-Espinal M, Iavicoli P, Calò A, Taulés M, Galve R, Marco MP, Samitier J. Quantification of interacting cognate odorants with olfactory receptors in nanovesicles. Sci Rep 2017; 7:17483. [PMID: 29235485 PMCID: PMC5727543 DOI: 10.1038/s41598-017-16997-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/26/2017] [Indexed: 02/02/2023] Open
Abstract
This study aims to improve our understanding of the interaction between olfactory receptors and odorants to develop highly selective biosensing devices. Natural nanovesicles (NVs) from Saccharomyces cerevisiae, ~100 nm in diameter, carrying either the human OR17-40 or the chimpanzee OR7D4 olfactory receptor (OR) tagged with the c-myc epitope at their N-terminus, are presented as model systems to quantify the interaction between odorant and olfactory receptors. The level of expression of olfactory receptors was determined at individual NVs using a novel competitive ELISA immunoassay comparing the values obtained against those from techniques involving the solubilization of cell membrane proteins and the identification of c-myc-carrying receptors. Surface Plasmon Resonance (SPR) measurements on L1 Biacore chips indicate that cognate odorants bind to their Ors, thereby quantifying the approximate number of odorants that interact with a given olfactory receptor. The selectivity of OR17-40-carrying NVs towards helional and OR7D4-carrying NVs towards androstenone has been proven in cross-check experiments with non-specific odorant molecules (heptanal and pentadecalactone, respectively) and in control receptors.
Collapse
Affiliation(s)
- Marta Sanmartí-Espinal
- IBEC - Institute for Bioengineering of Catalonia-Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. .,Department of Engineering: Electronics, University of Barcelona, Barcelona, Spain.
| | - Patrizia Iavicoli
- IBEC - Institute for Bioengineering of Catalonia-Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Annalisa Calò
- IBEC - Institute for Bioengineering of Catalonia-Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marta Taulés
- Centres Científics i Tecnològics, University of Barcelona, Barcelona, Spain
| | - Roger Galve
- Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - M Pilar Marco
- Nb4D - Nanobiotechnology for Diagnostics, IQAC-CSIC, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Josep Samitier
- IBEC - Institute for Bioengineering of Catalonia-Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. .,Department of Engineering: Electronics, University of Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|