1
|
Tunçer Çağlayan S. Combinatory effects of chlorhexidine and azithromycin: Implications for therapeutic potential and mechanistic insights. Microb Pathog 2025; 201:107373. [PMID: 39938665 DOI: 10.1016/j.micpath.2025.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
The use of drug combinations to re-sensitize resistant strains is a promising strategy to overcome the stagnation in the drug discovery pipeline. Here, the results demonstrate that the combined application of the broad-spectrum bisbiguanide antiseptic chlorhexidine (CHX) and the macrolide antibiotic azithromycin (AZM) significantly inhibits the growth of the Pseudomonas aeruginosa strain PAO1 (isolated from a wound) compared to the individual effects of each agent. Specifically, 1.5 μg/mL CHX caused 11.4 ± 4 % growth inhibition and 2 μg/mL AZM resulted in 14 ± 4.5 % inhibition; however, the combination of 1.5 μg/mL CHX and 2 μg/mL AZM achieved 58 ± 6 % inhibition, significantly exceeding the sum of their individual effects. Furthermore, the AZM and CHX combination reduced bacterial viability in biofilms. P. aeruginosa is a common pathogen in wounds, particularly chronic wounds, where it delays the healing process. An in vitro wound infection model further demonstrated that CHX and AZM combination reduced bacterial density and activity in a serum-supported collagen matrix. This combination was found to be effective not only against the Gram-negative P. aeruginosa but also against the Gram-positive Streptococcus mutans. To explain the observed combinatory inhibition effect mechanistically, Fourier Transform Infrared Spectroscopy (FTIR) was employed for the first time in the literature. The results reveal that CHX increases the cellular accumulation of AZM. Changes in the membrane lipid composition of the bacteria additionally suggest a mechanism for enhanced antibiotic accumulation in the presence of CHX. These findings suggest that the role of CHX as a potential partner in different syncretic combinations calls for comprehensive exploration in antibiotic resistant bacterial infections.
Collapse
Affiliation(s)
- Sinem Tunçer Çağlayan
- Vocational School of Health Services, Department of Medical Services and Techniques, Bilecik Şeyh Edebali University, 11100, Bilecik, Türkiye.
| |
Collapse
|
2
|
Patel DA, Jali BR, Sahoo SK. An AIE active luminogen derived using 2-hydroxy-1-naphthaldehyde and 3-hydroxy-2-naphthohydrazide for the detection of sparfloxacin and azithromycin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:469-475. [PMID: 39651708 DOI: 10.1039/d4ay01706d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Herein, an aggregation-induced emission (AIE) luminogen (AIEgen) NANH was developed by condensing equimolar amounts of 2-hydroxy-1-naphthaldehyde and 3-hydroxy-2-naphthohydrazide. The AIE behaviour of NANH was explored in a mixed DMSO-H2O (HEPES buffer, pH 7.4, 10 mM) medium. The self-aggregates of NANH show enhanced emission at HEPES fractions (fHEPES) ≥70%. AIEgen NANH (fHEPES 95%, λex = 390 nm, λem = 490 nm) was applied for the fluorescence turn-off sensing of sparfloxacin and azithromycin. With the addition of different analytes, the fluorescence intensity of AIEgen NANH was quenched by sparfloxacin and azithromycin. No noticeable changes in the fluorescence of AIEgen NANH were observed with other added analytes. Experimental evidence supported that the fluorescence quenching of AIEgen NANH by sparfloxacin and azithromycin is static in nature. From the fluorescence titrations, the detection limits of AIEgen NANH were estimated down to 0.64 μM and 0.65 μM for sparfloxacin and azithromycin, respectively. Further, blood serum samples spiked with sparfloxacin and azithromycin were used to examine the analytical utility of AIEgen NANH.
Collapse
Affiliation(s)
- Dhvani A Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat-395007, Gujarat, India.
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur-768018, Odisha, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat-395007, Gujarat, India.
| |
Collapse
|
3
|
Abugri DA, Wijerathne SVT, Sharma HN, Ayariga JA, Napier A, Robertson BK. Quercetin inhibits Toxoplasma gondii tachyzoite proliferation and acts synergically with azithromycin. Parasit Vectors 2023; 16:261. [PMID: 37537675 PMCID: PMC10401810 DOI: 10.1186/s13071-023-05849-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Quercetin (QUE) is a natural polyphenol known to have numerous pharmacological properties against infectious and non-infectious diseases. Azithromycin (AZ) is an antibiotic that belongs to the azalide class of antimicrobials and an antiparasitic that is known to be effective in combination with clindamycin against pyrimethamine/sulfadiazine-resistant Toxoplasma gondii tachyzoites in clinical settings. Both compounds are known to target protein synthesis and have anti-inflammatory properties. However, little is known about QUE and AZ synergistic interaction against T. gondii growth. Here, we report for the first time the effects of the combination of QUE and AZ on T. gondii growth. The 50% inhibitory concentration (IC50) for QUE at 72 h of interaction was determined to be 0.50 µM, whereas AZ gave an IC50 value of 0.66 µM at 72 h of interaction with parasites. Combination testing of QUE and AZ in a ratio of 2:1 (QUE:AZ) showed an IC50 value of 0.081 µM. Interestingly, a fractional inhibitory index value of 0.28 was observed, indicating a strong synergy. QUE was also found to upregulate the generation of reactive oxygen species and cause dysfunction of the mitochondria membrane of both intracellular and extracellular T. gondii tachyzoites. Overall, the results indicate that QUE is a novel lead capable of synergizing with AZ for inhibiting T. gondii growth and may merit future investigation in vivo for possible combination drug development.
Collapse
Affiliation(s)
- Daniel A Abugri
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
- Microbiology PhD Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
- Laboratory of Ethnomedicine, Parasitology and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
| | - Sandani V T Wijerathne
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Microbiology PhD Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Homa Nath Sharma
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Microbiology PhD Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Laboratory of Ethnomedicine, Parasitology and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Joseph A Ayariga
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Audrey Napier
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Boakai K Robertson
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Microbiology PhD Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| |
Collapse
|
4
|
Potapov K, Gordeev A, Biktasheva L, Rudakova M, Alexandrov A. Effects of Natural Rhamnolipid Mixture on Dioleoylphosphatidylcholine Model Membrane Depending on Method of Preparation and Sterol Content. MEMBRANES 2023; 13:112. [PMID: 36676919 PMCID: PMC9865241 DOI: 10.3390/membranes13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Rhamnolipids as biosurfactants have a potentially wide range of applications, for example, as "green" surfactants or components of drug delivery systems, which is associated with the features of their interaction with cell membranes. However, as noted in the literature, those kind of features have not been sufficiently studied now. This paper presents a study of the interaction of a natural mixture of rhamnolipids produced by bacteria of the rhizosphere zone of plants Pseudomonas aeruginosa with model membranes-liposomes based on dioleoylphosphatidylcholine (DOPC), depending on the method of their preparation and the content of sterols-ergosterol, cholesterol, lanosterol. Liposomes with rhamnolipids were prepared by two protocols: with film method from a mixture of DOPC and rhamnolipids; with film method from DOPC and injection of water solution of rhamnolipids. Joint analysis of the data of 31P NMR spectroscopy and ATR-FTIR spectroscopy showed that in the presence of rhamnolipids, the mobility of the head group of the DOPC phospholipid increases, the conformational disorder of the hydrophobic tail increases, and the degree of hydration of the C=O and P=O groups of the phospholipid decreases. It can be assumed that, when prepared from a mixture, rhamnolipids are incorporated into the membrane in the form of clusters and are located closer to the middle of the bilayer; while when prepared by injection, rhamnolipid molecules migrate into the membrane in the form of individual molecules and are located closer to the head part of phospholipids. The sterol composition of the model membrane also affects the interaction of rhamnolipids with the membrane. Here it is worth noting the possible presence of type of interaction between rhamnolipids and ergosterol differ from other investigated sterols, due to which rhamnolipid molecules are embedded in the area where ergosterol is located.
Collapse
Affiliation(s)
- Konstantin Potapov
- Department of Molecular Physics, Institute of Physics, Kazan Federal University, 420011 Kazan, Russia
| | - Alexander Gordeev
- Institute of Environmental Sciences, Kazan Federal University, 420011 Kazan, Russia
| | - Liliya Biktasheva
- Institute of Environmental Sciences, Kazan Federal University, 420011 Kazan, Russia
| | - Maya Rudakova
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, 420011 Kazan, Russia
| | - Artem Alexandrov
- Department of Molecular Physics, Institute of Physics, Kazan Federal University, 420011 Kazan, Russia
| |
Collapse
|
5
|
Manrique-Moreno M, Jemioła-Rzemińska M, Múnera-Jaramillo J, López GD, Suesca E, Leidy C, Strzałka K. Staphylococcus aureus Carotenoids Modulate the Thermotropic Phase Behavior of Model Systems That Mimic Its Membrane Composition. MEMBRANES 2022; 12:945. [PMID: 36295704 PMCID: PMC9612337 DOI: 10.3390/membranes12100945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Staphylococcus aureus (S. aureus) is a pathogenic gram-positive bacterium that normally resides in the skin and nose of the human body. It is subject to fluctuations in environmental conditions that may affect the integrity of the membrane. S. aureus produces carotenoids, which act as antioxidants. However, these carotenoids have also been implicated in modulating the biophysical properties of the membrane. Here, we investigate how carotenoids modulate the thermotropic phase behavior of model systems that mimic the phospholipid composition of S. aureus. We found that carotenoids depress the main phase transition of DMPG and CL, indicating that they strongly affect cooperativity of membrane lipids in their gel phase. In addition, carotenoids modulate the phase behavior of mixtures of DMPG and CL, indicating that they may play a role in modulation of lipid domain formation in S. aureus membranes.
Collapse
Affiliation(s)
- Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia
| | - Małgorzata Jemioła-Rzemińska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
| | - Jessica Múnera-Jaramillo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Elizabeth Suesca
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Kazimierz Strzałka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
| |
Collapse
|
6
|
Mahrous GR, Elkholy NS, Safwat G, Shafaa MW. Enhanced cytotoxic activity of beta carotene conjugated liposomes towards breast cancer cell line: comparative studies with cyclophosphamide. Anticancer Drugs 2022; 33:e462-e476. [PMID: 34726638 DOI: 10.1097/cad.0000000000001245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This work aims to evaluate cyclophosphamide (Cyclo) cytotoxic efficacy combined with liposomes in the presence or absence of beta carotene (beta) by detecting the effects of these compounds on the breast cancer cell line (MCF-7) DNA damage. The IC50 value for beta in cytotoxic assay with MCF-7 treated cells was 21.15 μg/ml, while with liposomal beta (LipoBeta) being 121 μg/ml. The free Cyclo IC50 value was 719.86 μg/ml, its liposomal form (LipoCyclo) was 172 μg/ml. The results indicated that in contrast with Cyclo and control values, all comet assay parameters for the LipoBeta were significantly increased (P < 0.05). In MCF-7 cells treated with beta, the findings show a higher intensity of comet tail than those treated with LipoBeta. The presence of several double-strand breaks suggests this high intensity relative to the head. The molecular combination between Cyclo and liposomes in the presence or absence of beta was characterized. Dynamic light scattering measurements confirmed the mono-dispersity of all samples. The incorporation of Cyclo or beta into liposomes exhibited a slight shift to higher temperature compared to the main peak of empty liposomes that exists at 101.5°C which creates a conformational disorder within the phospholipids. The FTIR study showed structural alterations in vesicles after liposome encapsulation.
Collapse
Affiliation(s)
- Gina R Mahrous
- Faculty of Biotechnology, October University for Modern Science and Arts, Cairo, Egypt
| | - Nourhan S Elkholy
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Science and Arts, Cairo, Egypt
| | - Medhat W Shafaa
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
7
|
Pharmacokinetic evaluation of the synergistic effect of raloxifene loaded transfersomes for transdermal delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Sakai-Kato K, Yoshida K, Takechi-Haraya Y, Izutsu KI. Physicochemical Characterization of Liposomes That Mimic the Lipid Composition of Exosomes for Effective Intracellular Trafficking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12735-12744. [PMID: 33054220 DOI: 10.1021/acs.langmuir.0c02491] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Exosomes mediate communication between cells in the body by the incorporation and transfer of biological materials. To design an artificial liposome, which would mimic the lipid composition and physicochemical characteristics of naturally occurring exosomes, we first studied the physicochemical properties of exosomes secreted from HepG2 cells. The exosome stiffness obtained by atomic force microscopy was moderate. Some liposomes were then fabricated to mimic the representative reported lipid composition of exosomes. Their physicochemical properties and cellular internalization efficiencies were investigated to optimize the cellular internalization efficiency of the liposomes. A favorable internalization efficiency was obtained by incubating HeLa cells with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/cholesterol (Chol)/1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) (40/40/20 mol %) liposomes, which have a similar stiffness and zeta potential to exosomes. A dramatic increase in internalization efficiency was demonstrated by adding DOPS to simple DSPC/Chol liposomes. We found that DOPS had a more desirable effect on cellular internalization than its saturated lipid counterpart, 1,2-distearoyl-sn-glycero-3-phospho-l-serine. Furthermore, it was shown that the phosphatidylserine-binding protein, T-cell immunoglobulin mucin protein 4, was largely involved in the intracellular transfer of DSPC/Chol/DOPS liposomes. Thus, DOPS was a key lipid to provide the appropriate stiffness, zeta potential, and membrane surface affinity of the resulting liposome. Our results may help develop efficient drug carriers aiming to internalize active substances into cells.
Collapse
Affiliation(s)
- Kumiko Sakai-Kato
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Kohki Yoshida
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Takechi-Haraya
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| |
Collapse
|
9
|
Battista S, Bellio P, Celenza G, Galantini L, Franceschini I, Mancini G, Giansanti L. Correlation of Physicochemical and Antimicrobial Properties of Liposomes Loaded with (+)-Usnic Acid. Chempluschem 2020; 85:1014-1021. [PMID: 32421257 DOI: 10.1002/cplu.202000125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/22/2020] [Indexed: 11/11/2022]
Abstract
(+)-Usnic acid (UA) is a natural substance that displays pharmacological activity, but it is barely soluble in water, so it was included in liposomes in order to study its properties. First, the effects of phospholipid structure and loading methodology on UA entrapment efficacy were evaluated. Then, the physicochemical and biological properties (UA delivery efficacy to Staphylococcus aureus bacterial cells) of different liposome formulations containing structurally related amphiphiles derived from L-prolinol were fully investigated. Entrapment efficiency of UA with passive loading by incubation was 80-100 molar percentage, which is related to lipophilicity of the drug and to the packing and fluidity of the bilayer. Some of the investigated formulations show the potential of UA in delivery systems (minimum inhibitory concentration of liposomal UA: 8 μg/mL) and even subtle variations of the molecular structure of lipids can significantly affect the liposomes' physicochemical properties and efficiency of drug release.
Collapse
Affiliation(s)
- Sara Battista
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio 10, 67010, Coppito (AQ), Italy
| | - Pierangelo Bellio
- Dipartimento di Scienze Chimiche Applicate e Biotecnologie, Università degli Studi dell'Aquila, Via Vetoio 10, 67010, Coppito, AQ, Italy
| | - Giuseppe Celenza
- Dipartimento di Scienze Chimiche Applicate e Biotecnologie, Università degli Studi dell'Aquila, Via Vetoio 10, 67010, Coppito, AQ, Italy
| | - Luciano Galantini
- Dipartimento di Chimica, Università degli Studi di Roma "Sapienza", P.le A. Moro 5, 00185, Roma, Italy
| | - Irene Franceschini
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio 10, 67010, Coppito (AQ), Italy
| | - Giovanna Mancini
- CNR-Istituto per i Sistemi Biologici, Via Salaria km 29.300, 00016, Monterotondo Scalo (RM, Italy
| | - Luisa Giansanti
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio 10, 67010, Coppito (AQ), Italy
| |
Collapse
|
10
|
Ngo DTN, Nguyen TQ, Huynh HK, Nguyen TT. Thermodynamics of selective serotonin reuptake inhibitors partitioning into 1,2-dioleoyl- sn-glycero-3-phosphocholine bilayers. RSC Adv 2020; 10:39338-39347. [PMID: 35518408 PMCID: PMC9057331 DOI: 10.1039/d0ra07367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022] Open
Abstract
Knowledge of thermodynamics of lipid membrane partitioning of amphiphilic drugs as well as their binding site within the membrane are of great relevance not only for understanding the drugs' pharmacology but also for the development and optimization of more potent drugs. In this study, the interaction between two representatives of selective serotonin reuptake inhibitors, including paroxetine and sertraline, and large unilamellar vesicles (LUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was investigated by second derivative spectrophotometry and Fourier transform infrared spectroscopy (FTIR) to determine the driving force of the drug partitioning across lipid membranes. It was found that temperature increase from 25 to 42 °C greatly enhanced the partitioning of paroxetine and sertraline into DOPC LUVs, and sertraline intercalated into the lipid vesicles to a greater extent than paroxetine in the temperature range examined. The partitioning of both drugs into DOPC LUVs was a spontaneous, endothermic and entropy-driven process. FTIR measurements suggested that sertraline could penetrate deeply into the acyl tails of DOPC LUVs as shown by the considerable shifts in the lipid's CH2 and C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O stretching modes induced by the drug. Paroxetine, however, could reside closer to the head groups of the lipid since its presence caused a larger shift in the PO2− bands of DOPC LUVs. The findings reported here provide valuable insights into the influence of small molecules' chemical structure on their molecular interaction with the lipid bilayer namely their possible binding sites within the lipid bilayer and their thermodynamics profiles of partitioning, which could benefit rational drug design and drug delivery systems. Paroxetine and sertraline have the same thermodynamics profile of phospholipid bilayer partitioning but different location within the lipid bilayer.![]()
Collapse
Affiliation(s)
- Dat T. N. Ngo
- Department of Biotechnology
- International University
- Ho Chi Minh City
- Vietnam
- Vietnam National University
| | - Trinh Q. Nguyen
- Department of Biotechnology
- International University
- Ho Chi Minh City
- Vietnam
- Vietnam National University
| | - Hieu K. Huynh
- University of Medicine and Pharmacy at Ho Chi Minh City
- Ho Chi Minh City
- Vietnam
| | - Trang T. Nguyen
- Department of Chemical Engineering
- International University
- Ho Chi Minh City
- Vietnam
- Vietnam National University
| |
Collapse
|
11
|
Golysheva EA, Dzuba SA. Lipid chain mobility and packing in DOPC bilayers at cryogenic temperatures. Chem Phys Lipids 2019; 226:104817. [PMID: 31525380 DOI: 10.1016/j.chemphyslip.2019.104817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
Low-temperature molecular mobility and packing in biological tissues are important for their survival upon cryopreservation. Electron paramagnetic resonance (EPR) in its pulsed version of electron spin echo (ESE) allows studying stochastic librations of spin-labeled molecules, the type of motion which dominates at low temperatures. These librations are characterized by the parameter <α2>τc where <α2> is the mean squared angular amplitude and τc is the correlation time for the motion. This parameter is known to be larger for higher temperature and for looser intermolecular structure. In this work, ESE data for the bilayers comprised of doubly-unsaturated DOPC (dioleoyl-glycero-phosphocholine) lipids and mono-unsaturated POPC (palmitoyl-oleoyl-glycero-phosphocholine) lipids with spin-labeled stearic acids added were obtained in the temperature range between 80 and 210 K; the results were compared also with the previously obtained data for fully-saturated DPPC (dipalmitoyl-glycero-phosphocholine) lipid bilayers [J. Phys. Chem. B2014, 118, 12,478-12,485; Appl. Magn. Reson. 2018, 49, 1369-1383]. It turned out that for DOPC bilayers the <α2>τc values are of intermediate magnitude between those for POPC and DPPC bilayers, which implies an intermediate density of lipid packing. A possible explanation of this result could be rearrangement at cryogenic temperatures of the DOPC lipid tails, with their terminal segments folding cooperatively. This interpretation is also in agreement with the known thermodynamic properties of gel-fluid transition for DOPC bilayer.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation; Department of Physics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation; Department of Physics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation.
| |
Collapse
|
12
|
Pinheiro M, Magalhães J, Reis S. Antibiotic interactions using liposomes as model lipid membranes. Chem Phys Lipids 2019; 222:36-46. [PMID: 31078558 DOI: 10.1016/j.chemphyslip.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023]
|
13
|
Camuri IJ, Costa AB, Ito AS, Pazin WM. pH and Charge Effects Behind the Interaction of Artepillin C, the Major Component of Green Propolis, With Amphiphilic Aggregates: Optical Absorption and Fluorescence Spectroscopy Studies. Photochem Photobiol 2019; 95:1345-1351. [DOI: 10.1111/php.13128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/24/2019] [Accepted: 05/14/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Isamara Julia Camuri
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto University of São Paulo (USP) Ribeirão Preto SP Brazil
| | - Adriano Batista Costa
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto University of São Paulo (USP) Ribeirão Preto SP Brazil
| | - Amando Siuiti Ito
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto University of São Paulo (USP) Ribeirão Preto SP Brazil
| | - Wallance Moreira Pazin
- Department of Physics, School of Sciences and Technology São Paulo State University (UNESP) Presidente Prudente SP Brazil
| |
Collapse
|
14
|
Pazin WM, Vilanova N, Voets IK, Soares AEE, Ito AS. Effects of artepillin C on model membranes displaying liquid immiscibility. ACTA ACUST UNITED AC 2019; 52:e8281. [PMID: 30916221 PMCID: PMC6437936 DOI: 10.1590/1414-431x20198281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/22/2019] [Indexed: 01/13/2023]
Abstract
It has been hypothesized that the therapeutic effects of artepillin C, a natural
compound derived from Brazilian green propolis, are likely related to its
partition in the lipid bilayer component of biological membranes. To test this
hypothesis, we investigated the effects of the major compound of green propolis,
artepillin C, on model membranes (small and giant unilamelar vesicles) composed
of ternary lipid mixtures containing cholesterol, which display liquid-ordered
(lo) and liquid-disordered (ld) phase coexistence.
Specifically, we explored potential changes in relevant membrane parameters upon
addition of artepillin C presenting both neutral and deprotonated states by
means of small angle X-ray scattering (SAXS), differential scanning calorimetry
(DSC), and confocal and multiphoton excitation fluorescence microscopy.
Thermotropic analysis obtained from DSC experiments indicated a loss in the
lipid cooperativity of lo phase at equilibrium conditions, while at
similar conditions spontaneous formation of unilamellar vesicles from SAXS
experiments showed that deprotonated artepillin C preferentially located at the
surface of the membrane. Time-resolved experiments using fluorescence microscopy
showed that at doses above 100 µM, artepillin C in its neutral state interacted
with both liquid-ordered and liquid-disordered phases, inducing curvature stress
and promoting dehydration at the membrane interface.
Collapse
Affiliation(s)
- W M Pazin
- Departmento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.,Departmento de Física, Faculdade de Ciências e Tecnologia, Universidade do Estado de São Paulo, Presidente Prudente, SP, Brasil
| | - N Vilanova
- Macromolecular and Organic Chemistry, Physical Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - I K Voets
- Macromolecular and Organic Chemistry, Physical Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.,Dutch Polymer Institute (DPI), Eindhoven, The Netherlands
| | - A E E Soares
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A S Ito
- Departmento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
15
|
Azalomycin F5a, a polyhydroxy macrolide binding to the polar head of phospholipid and targeting to lipoteichoic acid to kill methicillin-resistant Staphylococcus aureus. Biomed Pharmacother 2019; 109:1940-1950. [DOI: 10.1016/j.biopha.2018.11.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 11/22/2022] Open
|
16
|
Kontogiannopoulos KN, Dasargyri A, Ottaviani MF, Cangiotti M, Fessas D, Papageorgiou VP, Assimopoulou AN. Advanced Drug Delivery Nanosystems for Shikonin: A Calorimetric and Electron Paramagnetic Resonance Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9424-9434. [PMID: 30032619 DOI: 10.1021/acs.langmuir.8b00751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Drug delivery is considered a mature scientific and technological platform for producing innovative medicines with nanosystems composed of intelligent bio-materials that carry active pharmaceutical ingredients forming advanced drug delivery nanosystems (aDDnSs). Shikonin and its enantiomer alkannin are natural products that have been extensively studied in vitro and in vivo for, among others, their antitumor activity, and various efforts have been made to prepare shikonin-loaded drug delivery systems. This study is focused on chimeric aDDnSs and specifically on liposomal formulations combining three lipids (egg-phosphatidylcholine; dipalmitoyl phosphatidylcholine; and distearoyl phosphatidylcholine) and a hyperbranched polymer (PFH-64-OH). Furthermore, PEGylated liposomal formulations of all samples were also prepared. Calorimetric techniques and electron paramagnetic resonance were used to explore and evaluate the interactions and stability of the liposomal formulations, showing that the presence of hyperbranched polymers promote the overall stability of the chimeric aDDnSs based on the drug release profile enhancement. Furthermore, results showed that polyethylene glycol enhances drug stabilization inside the liposomes, forming a stable and promising carrier for shikonin with improved characteristics.
Collapse
Affiliation(s)
- Konstantinos N Kontogiannopoulos
- Organic Chemistry Laboratory, School of Chemical Engineering , Aristotle University of Thessaloniki , 54124 Thessaloniki , Greece
| | - Athanasia Dasargyri
- Organic Chemistry Laboratory, School of Chemical Engineering , Aristotle University of Thessaloniki , 54124 Thessaloniki , Greece
| | - M Francesca Ottaviani
- Department of Pure and Applied Sciences, Scientific Campus E. Mattei , University of Urbino , 61029 Urbino , Italy
| | - Michela Cangiotti
- Department of Pure and Applied Sciences, Scientific Campus E. Mattei , University of Urbino , 61029 Urbino , Italy
| | - Dimitrios Fessas
- Department of Food, Environmental and Nutritional Sciences (DeFENS) , Università degli Studi di Milano , Via Celoria 2 , 20133 Milano , Italy
| | - Vassilios P Papageorgiou
- Organic Chemistry Laboratory, School of Chemical Engineering , Aristotle University of Thessaloniki , 54124 Thessaloniki , Greece
| | - Andreana N Assimopoulou
- Organic Chemistry Laboratory, School of Chemical Engineering , Aristotle University of Thessaloniki , 54124 Thessaloniki , Greece
| |
Collapse
|
17
|
Sharifian Gh. M, Wilhelm MJ, Dai HL. Azithromycin-Induced Changes to Bacterial Membrane Properties Monitored in Vitro by Second-Harmonic Light Scattering. ACS Med Chem Lett 2018; 9:569-574. [PMID: 29937984 DOI: 10.1021/acsmedchemlett.7b00499] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/09/2018] [Indexed: 01/15/2023] Open
Abstract
We present a nonlinear light scattering method for monitoring, with real-time resolution and membrane specificity, changes in molecular adsorption, and transport at bacterial membranes induced by an antimicrobial compound. Specifically, time-resolved second-harmonic light scattering (SHS) is used to quantify azithromycin-induced changes to bacterial membrane permeability in colloidal suspensions of living Escherichia coli. Variations in membrane properties are monitored through changes in the adsorption and transport rates of malachite green, a hydrophobic cation that gives SHS signal. Regardless of concentration, instantaneous treatment with azithromycin showed no significant changes in membrane permeability. However, 1 h pretreatment with subminimum inhibitory concentrations of azithromycin induced an order-of-magnitude enhancement in the permeability of both the outer membrane and, through facilitation of a new transport mechanism, the cytoplasmic membrane of the bacteria as well. This study illustrates SHS as a novel tool for monitoring antimicrobial-induced changes to membrane properties in living bacteria.
Collapse
Affiliation(s)
- Mohammad Sharifian Gh.
- Department of Chemistry, Temple University
, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael J. Wilhelm
- Department of Chemistry, Temple University
, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Hai-Lung Dai
- Department of Chemistry, Temple University
, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
18
|
Siontorou CG, Nikoleli GP, Nikolelis DP, Karapetis SK. Artificial Lipid Membranes: Past, Present, and Future. MEMBRANES 2017; 7:E38. [PMID: 28933723 PMCID: PMC5618123 DOI: 10.3390/membranes7030038] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 11/17/2022]
Abstract
The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life.
Collapse
Affiliation(s)
- Christina G Siontorou
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industry, University of Piraeus, 18534 Piraeus, Greece.
| | - Georgia-Paraskevi Nikoleli
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Department of Chemical Sciences, National Technical University of Athens, 15780 Athens, Greece.
| | - Dimitrios P Nikolelis
- Laboratory of Environmental Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece.
| | - Stefanos K Karapetis
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Department of Chemical Sciences, National Technical University of Athens, 15780 Athens, Greece.
| |
Collapse
|
19
|
Et-Thakafy O, Delorme N, Gaillard C, Mériadec C, Artzner F, Lopez C, Guyomarc'h F. Mechanical Properties of Membranes Composed of Gel-Phase or Fluid-Phase Phospholipids Probed on Liposomes by Atomic Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5117-5126. [PMID: 28475345 DOI: 10.1021/acs.langmuir.7b00363] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In many liposome applications, the nanomechanical properties of the membrane envelope are essential to ensure, e.g., physical stability, protection, or penetration into tissues. Of all factors, the lipid composition and its phase behavior are susceptible to tune the mechanical properties of membranes. To investigate this, small unilamellar vesicles (SUV; diameter < 200 nm), referred to as liposomes, were produced using either unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in aqueous buffer at pH 6.7. The respective melting temperatures of these phospholipids were -20 and 41 °C. X-ray diffraction analysis confirmed that at 20 °C DOPC was in the fluid phase and DPPC was in the gel phase. After adsorption of the liposomes onto flat silicon substrates, atomic force microscopy (AFM) was used to image and probe the mechanical properties of the liposome membrane. The resulting force-distance curves were treated using an analytical model based on the shell theory to yield the Young's modulus (E) and the bending rigidity (kC) of the curved membranes. The mechanical investigation showed that DPPC membranes were much stiffer (E = 116 ± 45 MPa) than those of DOPC (E = 13 ± 9 MPa) at 20 °C. The study demonstrates that the employed methodology allows discrimination of the respective properties of gel- or fluid-phase membranes when in the shape of liposomes. It opens perspectives to map the mechanical properties of liposomes containing both fluid and gel phases or of biological systems.
Collapse
Affiliation(s)
| | - Nicolas Delorme
- UMR CNRS 6283 Institut des Molécules et Matériaux du Mans, Université du Maine, Université Bretagne-Loire, 72000 Le Mans, France
| | - Cédric Gaillard
- UR BIA 1268 Biopolymères Interactions Assemblages, INRA, 44316 Nantes, France
| | - Cristelle Mériadec
- Institut de Physique de Rennes, UMR 6251, CNRS, Université de Rennes 1, 263 Av. Général Leclerc, 35042 Rennes, France
| | - Franck Artzner
- Institut de Physique de Rennes, UMR 6251, CNRS, Université de Rennes 1, 263 Av. Général Leclerc, 35042 Rennes, France
| | | | | |
Collapse
|
20
|
Pazin WM, Olivier DDS, Vilanova N, Ramos AP, Voets IK, Soares AEE, Ito AS. Interaction of Artepillin C with model membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:383-393. [DOI: 10.1007/s00249-016-1183-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 02/05/2023]
|
21
|
Effect of cis-(Z)-flupentixol on DPPC membranes in the presence and absence of cholesterol. Chem Phys Lipids 2016; 198:61-71. [DOI: 10.1016/j.chemphyslip.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/21/2016] [Accepted: 06/02/2016] [Indexed: 12/18/2022]
|
22
|
Dmitriev AA, Surovtsev NV. Temperature-Dependent Hydrocarbon Chain Disorder in Phosphatidylcholine Bilayers Studied by Raman Spectroscopy. J Phys Chem B 2015; 119:15613-22. [DOI: 10.1021/acs.jpcb.5b07502] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. A. Dmitriev
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | |
Collapse
|
23
|
Gortzi O, Rovoli M, Lalas S, Kontopidis G. Development and Evaluation of a Phospholipid-sterol-protein Membrane Resembling System. FOOD BIOPHYS 2015. [DOI: 10.1007/s11483-015-9390-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Deleu M, Crowet JM, Nasir MN, Lins L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3171-3190. [DOI: 10.1016/j.bbamem.2014.08.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/05/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023]
|
25
|
Solleti VS, Alhariri M, Halwani M, Omri A. Antimicrobial properties of liposomal azithromycin for Pseudomonas infections in cystic fibrosis patients. J Antimicrob Chemother 2014; 70:784-96. [DOI: 10.1093/jac/dku452] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
Volpati D, Aoki PHB, Alessio P, Pavinatto FJ, Miranda PB, Constantino CJL, Oliveira ON. Vibrational spectroscopy for probing molecular-level interactions in organic films mimicking biointerfaces. Adv Colloid Interface Sci 2014; 207:199-215. [PMID: 24530000 DOI: 10.1016/j.cis.2014.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/28/2013] [Accepted: 01/13/2014] [Indexed: 01/26/2023]
Abstract
Investigation into nanostructured organic films has served many purposes, including the design of functionalized surfaces that may be applied in biomedical devices and tissue engineering and for studying physiological processes depending on the interaction with cell membranes. Of particular relevance are Langmuir monolayers, Langmuir-Blodgett (LB) and layer-by-layer (LbL) films used to simulate biological interfaces. In this review, we shall focus on the use of vibrational spectroscopy methods to probe molecular-level interactions at biomimetic interfaces, with special emphasis on three surface-specific techniques, namely sum frequency generation (SFG), polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and surface-enhanced Raman scattering (SERS). The two types of systems selected for exemplifying the potential of the methods are the cell membrane models and the functionalized surfaces with biomolecules. Examples will be given on how SFG and PM-IRRAS can be combined to determine the effects from biomolecules on cell membrane models, which include determination of the orientation and preservation of secondary structure. Crucial information for the action of biomolecules on model membranes has also been obtained with PM-IRRAS, as is the case of chitosan removing proteins from the membrane. SERS will be shown as promising for enabling detection limits down to the single-molecule level. The strengths and limitations of these methods will also be discussed, in addition to the prospects for the near future.
Collapse
Affiliation(s)
- Diogo Volpati
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos, SP 13560-970, Brazil
| | - Pedro H B Aoki
- Faculty of Science and Technology, UNESP, Presidente Prudente, CEP 19060-900 SP,Brazil
| | - Priscila Alessio
- Faculty of Science and Technology, UNESP, Presidente Prudente, CEP 19060-900 SP,Brazil
| | - Felippe J Pavinatto
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos, SP 13560-970, Brazil
| | - Paulo B Miranda
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos, SP 13560-970, Brazil
| | | | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
27
|
Phase Separation in Phosphatidylcholine Membrane Caused by the Presence of a Pyrimidine Analogue of Fluphenazine with High Anti-Multidrug-Resistance Activity. J Phys Chem B 2014; 118:3605-15. [DOI: 10.1021/jp410882r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Bicellar systems as vehicle for the treatment of impaired skin. Eur J Pharm Biopharm 2014; 86:212-8. [DOI: 10.1016/j.ejpb.2013.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 11/23/2022]
|
29
|
Villasmil-Sánchez S, Rabasco AM, González-Rodríguez ML. Thermal and 31P-NMR studies to elucidate sumatriptan succinate entrapment behavior in Phosphatidylcholine/Cholesterol liposomes. Comparative 31P-NMR analysis on negatively and positively-charged liposomes. Colloids Surf B Biointerfaces 2013; 105:14-23. [DOI: 10.1016/j.colsurfb.2012.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/19/2012] [Accepted: 12/10/2012] [Indexed: 01/29/2023]
|
30
|
Anti-inflammatory mechanism of action of azithromycin in LPS-stimulated J774A.1 cells. Pharmacol Res 2012; 66:357-62. [DOI: 10.1016/j.phrs.2012.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 11/24/2022]
|
31
|
|
32
|
Barenholz Y, Bombelli C, Bonicelli MG, Profio PD, Giansanti L, Mancini G, Pascale F. Influence of lipid composition on the thermotropic behavior and size distribution of mixed cationic liposomes. J Colloid Interface Sci 2011; 356:46-53. [DOI: 10.1016/j.jcis.2010.11.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/18/2010] [Accepted: 11/20/2010] [Indexed: 01/22/2023]
|
33
|
Pravda J. Crohn's disease: evidence for involvement of unregulated transcytosis in disease etio-pathogenesis. World J Gastroenterol 2011; 17:1416-26. [PMID: 21472099 PMCID: PMC3070014 DOI: 10.3748/wjg.v17.i11.1416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/11/2010] [Accepted: 12/18/2010] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease. Research has identified genetic predisposition and environmental factors as key elements in the development of the disease. However, the precise mechanism that initiates immune activation remains undefined. One pathway for luminal antigenic molecules to enter the sterile lamina propria and activate an immune response is via transcytosis. Transcytosis, although tightly regulated by the cell, has the potential for transepithelial transport of bacteria and highly antigenic luminal molecules whose uncontrolled translocation into the lamina propria can be the source of immune activation. Viewed as a whole, the evidence suggests that unregulated intestinal epithelial transcytosis is involved in the inappropriate presentation of immunogenic luminal macromolecules to the intestinal lamina propria. Thus fulfilling the role of an early pre-morbid mechanism that can result in antigenic overload of the lamina propria and initiate an immune response culminating in chronic inflammation characteristic of this disease. It is the aim of this paper to present evidence implicating enterocyte transcytosis in the early etio-pathogenesis of CD.
Collapse
|
34
|
Convulsant agent pentylenetetrazol does not alter the structural and dynamical properties of dipalmitoylphosphatidylcholine model membranes. J Pharm Biomed Anal 2011; 54:379-86. [DOI: 10.1016/j.jpba.2010.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/31/2010] [Accepted: 09/02/2010] [Indexed: 11/19/2022]
|
35
|
Gardikis K, Hatziantoniou S, Signorelli M, Pusceddu M, Micha-Screttas M, Schiraldi A, Demetzos C, Fessas D. Thermodynamic and structural characterization of Liposomal-Locked in-Dendrimers as drug carriers. Colloids Surf B Biointerfaces 2010; 81:11-9. [DOI: 10.1016/j.colsurfb.2010.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
|
36
|
Chibowski E, Delgado AV, Rudzka K, Szcześ A, Hołysz L. Surface modification of glass plates and silica particles by phospholipid adsorption. J Colloid Interface Sci 2010; 353:281-9. [PMID: 20932536 DOI: 10.1016/j.jcis.2010.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 11/25/2022]
Abstract
The effect of phospholipid adsorption on the hydrophobicity of glass plates and on the surface charge of silica particles using contact angle and electrophoretic mobility measurements, respectively, was investigated. Deposition of successive statistical monolayers of dipalmitoylphosphatidylcholine (DPPC) on the glass surface showed zig-zag changes of water contact angle, especially on the first few monolayers. This behavior is qualitatively coherent with the oscillations observed in zeta potential values for increasing DPPC concentration. The results indicate that the phospholipid is adsorbed vertically on the plates, exposing alternately its polar head and non-polar hydrocarbon chains in successive layers. On the other hand, experiments conducted on glass plates prior hydrophobized by contact with n-tetradecane suggest that DPPC molecules may to some extent dissolve in the relatively thick n-alkane film and then expose their polar heads over the film surface thus producing polar electron-donor interactions. The effect of both DPPC and dioleoylphosphatidylcholine (DOPC) on the electrokinetic potential of silica spheres confirms adsorption of the phospholipids, leading to a decrease in the (originally negative) zeta potential of silica and even reversal of its sign to positive at acidic pH. Hydrophobic interactions between phospholipid molecules in the medium and those already adsorbed may explain the overcharging. The adsorption of neutral phospholipids may reduce the zeta potential as a consequence of the shift of the electrokinetic or slip plane. The effect is more evident in the case of DOPC, suggesting a less efficient packing of this phospholipid because of the presence of double bonds in its molecule, which in fact is well known.
Collapse
Affiliation(s)
- Emil Chibowski
- Department of Physical Chemistry-Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
| | | | | | | | | |
Collapse
|
37
|
Mertins O, Schneider PH, Pohlmann AR, da Silveira NP. Interaction between phospholipids bilayer and chitosan in liposomes investigated by 31P NMR spectroscopy. Colloids Surf B Biointerfaces 2010; 75:294-9. [DOI: 10.1016/j.colsurfb.2009.08.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/22/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
|
38
|
Peetla C, Stine A, Labhasetwar V. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm 2009; 6:1264-76. [PMID: 19432455 DOI: 10.1021/mp9000662] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transport of drugs or drug delivery systems across the cell membrane is a complex biological process, often difficult to understand because of its dynamic nature. In this regard, model lipid membranes, which mimic many aspects of cell-membrane lipids, have been very useful in helping investigators to discern the roles of lipids in cellular interactions. One can use drug-lipid interactions to predict pharmacokinetic properties of drugs, such as their transport, biodistribution, accumulation, and hence efficacy. These interactions can also be used to study the mechanisms of transport, based on the structure and hydrophilicity/hydrophobicity of drug molecules. In recent years, model lipid membranes have also been explored to understand their mechanisms of interactions with peptides, polymers, and nanocarriers. These interaction studies can be used to design and develop efficient drug delivery systems. Changes in the lipid composition of cells and tissue in certain disease conditions may alter biophysical interactions, which could be explored to develop target-specific drugs and drug delivery systems. In this review, we discuss different model membranes, drug-lipid interactions and their significance, studies of model membrane interactions with nanocarriers, and how biophysical interaction studies with lipid model membranes could play an important role in drug discovery and drug delivery.
Collapse
Affiliation(s)
- Chiranjeevi Peetla
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
39
|
The interactions between phosphatidylglycerol and phosphatidylethanolamines in model bacterial membranes. Colloids Surf B Biointerfaces 2009; 72:32-9. [DOI: 10.1016/j.colsurfb.2009.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/08/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
|
40
|
Kim SM. Syndecan-4 cytoplasmic domain could disturb the multilamellar vesicle. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2009. [DOI: 10.6564/jkmrs.2009.13.1.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Bensikaddour H, Snoussi K, Lins L, Van Bambeke F, Tulkens PM, Brasseur R, Goormaghtigh E, Mingeot-Leclercq MP. Interactions of ciprofloxacin with DPPC and DPPG: Fluorescence anisotropy, ATR-FTIR and 31P NMR spectroscopies and conformational analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2535-43. [DOI: 10.1016/j.bbamem.2008.08.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
|
42
|
Characterization of the interactions between fluoroquinolone antibiotics and lipids: a multitechnique approach. Biophys J 2008; 94:3035-46. [PMID: 18178657 PMCID: PMC2275711 DOI: 10.1529/biophysj.107.114843] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Probing drug/lipid interactions at the molecular level represents an important challenge in pharmaceutical research and membrane biophysics. Previous studies showed differences in accumulation and intracellular activity between two fluoroquinolones, ciprofloxacin and moxifloxacin, that may actually result from their differential susceptibility to efflux by the ciprofloxacin transporter. In view of the critical role of lipids for the drug cellular uptake and differences observed for the two closely related fluoroquinolones, we investigated the interactions of these two antibiotics with lipids, using an array of complementary techniques. Moxifloxacin induced, to a greater extent than ciprofloxacin, an erosion of the DPPC domains in the DOPC fluid phase (atomic force microscopy) and a shift of the surface pressure-area isotherms of DOPC/DPPC/fluoroquinolone monolayer toward lower area per molecule (Langmuir studies). These effects are related to a lower propensity of moxifloxacin to be released from lipid to aqueous phase (determined by phase transfer studies and conformational analysis) and a marked decrease of all-trans conformation of acyl-lipid chains of DPPC (determined by ATR-FTIR) without increase of lipid disorder and change in the tilt between the normal and the germanium surface (also determined by ATR-FTIR). All together, differences of ciprofloxacin as compared to moxifloxacin in their interactions with lipids could explain differences in their cellular accumulation and susceptibility to efflux transporters.
Collapse
|