1
|
Sharma B, Pérez-García L, Chaudhary GR, Kaur G. Innovative approaches to cationic and anionic (catanionic) amphiphiles self-assemblies: Synthesis, properties, and industrial applications. Adv Colloid Interface Sci 2024; 337:103380. [PMID: 39732047 DOI: 10.1016/j.cis.2024.103380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/30/2024]
Abstract
Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements. Catanionic self-assemblies possess high stability, adjustable surface charge, and low critical aggregation concentration. This comprehensive review article distinguishes between cationic/anionic non-equimolar and equimolar ratio mixing formation of high-salt catanionic self-assemblies known as catanionic mixture and salt-free counterparts, termed ion-pair amphiphiles, respectively. It explores diverse synthesis techniques, emphasizing the roles of solvents, salts, and pH conditions and covers both experimental and theoretical aspects of state-of-the-art catanionic self-assemblies. Additionally, the review investigates the development of multi-responsive catanionic self-assemblies using light, pH, temperature, and redox, responsive cationic/anionic amphiphiles. It provides an in-depth exploration of potential synergistic interactions and properties, underscoring their practical importance in a wide range of industrial applications. The review explores challenges like precipitation, stability and identifies knowledge gaps, creating opportunities in the dynamic catanionic self-assembly field. It aims to offer insights into the journey of catanionic self-assemblies, from inception to current status, appealing to a broad audience invested in their scientific and industrial potential.
Collapse
Affiliation(s)
- Bunty Sharma
- Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India; Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Lluïsa Pérez-García
- Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Avda. Joan XXIII 27-31, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia UB (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India; Sophisticated Analytical Instrumentation Facility (SAIF)/Central Instrumentation Laboratory (CIL), Panjab University, Chandigarh 160014, India.
| | - Gurpreet Kaur
- Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Manna E, Barai M, Mandal MK, Sultana H, Guchhait KC, Gawali SL, Aswal VK, Ghosh C, Patra A, Misra AK, Yusa SI, Hassan PA, Panda AK. Impact of Ionic Liquids on the Physicochemical Behavior of Vesicles. J Phys Chem B 2024; 128:6816-6829. [PMID: 38959082 DOI: 10.1021/acs.jpcb.4c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The effects of two ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4) and 1-butyl-1-methyl pyrrolidinium tetrafluoroborate ([bmp]BF4), on a mixture of phospholipids (PLs) 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) (6:3:1, M/M/M, 70% PL) in combination with 30 mol % cholesterol (CHOL) were investigated in the form of a solvent-spread monolayer and bilayer (vesicle). Surface pressure (π)-area (A) isotherm studies, using a Langmuir surface balance, revealed the formation of an expanded monolayer, while the cationic moiety of the IL molecules could electrostatically and hydrophobically bind to the PLs on the palisade layer. Turbidity, dynamic light scattering (size, ζ-potential, and polydispersity index), electron microscopy, small-angle X-ray/neutron scattering, fluorescence spectroscopy, and differential scanning calorimetric studies were carried out to evaluate the effects of IL on the structural organization of bilayer in the vesicles. The ILs could induce vesicle aggregation by acting as a "glue" at lower concentrations (<1.5 mM), while at higher concentrations, the ILs disrupt the bilayer structure. Besides, ILs could result in the thinning of the bilayer, evidenced from the scattering studies. Steady-state fluorescence anisotropy and lifetime studies suggest asymmetric insertion of ILs into the lipid bilayer. MTT assay using human blood lymphocytes indicates the safe application of vesicles in the presence of ILs, with a minimal toxicity of up to 2.5 mM IL in the dispersion. These results are proposed to have applications in the field of drug delivery systems with benign environmental impact.
Collapse
Affiliation(s)
- Emili Manna
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Manas Barai
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Manas K Mandal
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Habiba Sultana
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Kartik C Guchhait
- Department of Human Physiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Santosh L Gawali
- Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhaba Atomic Research Centre, Mumbai 400085, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Ajay K Misra
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Shin-Ichi Yusa
- Department of Applied Chemistry,Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | | | - Amiya K Panda
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| |
Collapse
|
3
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
4
|
Zouliati K, Stavropoulou P, Chountoulesi M, Naziris N, Demisli S, Mitsou E, Papadimitriou V, Chatzidaki M, Xenakis A, Demetzos C. Development and evaluation of liposomal nanoparticles incorporating dimethoxycurcumin. In vitro toxicity and permeability studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Müller E, Drechsler M, Klein R, Heilmann J, Estrine B, Kunz W. Physical-Chemical and Toxicological Properties of Osmolyte-Based Cationic Surfactants and Spontaneously Formed Low-Toxic Catanionic Vesicles out of them. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Hsieh IT, Chang JS, Chou TH. The impact of the surfactant type on physicochemical properties, encapsulation, and in vitro biocompatibility of coconut oil nanoemulsions. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Aggregation Behavior, Antibacterial Activity and Biocompatibility of Catanionic Assemblies Based on Amino Acid-Derived Surfactants. Int J Mol Sci 2020; 21:ijms21238912. [PMID: 33255401 PMCID: PMC7727793 DOI: 10.3390/ijms21238912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 01/18/2023] Open
Abstract
The surface activity, aggregates morphology, size and charge characteristics of binary catanionic mixtures containing a cationic amino acid-derived surfactant N(π), N(τ)-bis(methyl)-L-Histidine tetradecyl amide (DMHNHC14) and an anionic surfactant (the lysine-based surfactant Nα-lauroyl-Nεacetyl lysine (C12C3L) or sodium myristate) were investigated for the first time. The cationic surfactant has an acid proton which shows a strong pKa shift irrespective of aggregation. The resulting catanionic mixtures exhibited high surface activity and low critical aggregation concentration as compared with the pure constituents. Catanionic vesicles based on DMHNHC14/sodium myristate showed a monodisperse population of medium-size aggregates and good storage stability. According to Small-Angle X-Ray Scattering (SAXS), the characteristics of the bilayers did not depend strongly on the system composition for the positively charged vesicles. Negatively charged vesicles (cationic surfactant:myristate ratio below 1:2) had similar bilayer composition but tended to aggregate. The DMHNHC14-rich vesicles exhibited good antibacterial activity against Gram-positive bacteria and their bactericidal effectivity declined with the decrease of the cationic surfactant content in the mixtures. The hemolytic activity and cytotoxicity of these catanionic formulations against non-tumoral (3T3, HaCaT) and tumoral (HeLa, A431) cell lines also improved by increasing the ratio of cationic surfactant in the mixture. These results indicate that the biological activity of these systems is mainly governed by the cationic charge density, which can be modulated by changing the cationic/anionic surfactant ratio in the mixtures. Remarkably, the incorporation of cholesterol in those catanionic vesicles reduces their cytotoxicity and increases the safety of future biomedical applications of these systems.
Collapse
|
8
|
Siddique MI, Katas H, Jamil A, Mohd Amin MCI, Ng SF, Zulfakar MH, Nadeem SM. Potential treatment of atopic dermatitis: tolerability and safety of cream containing nanoparticles loaded with hydrocortisone and hydroxytyrosol in human subjects. Drug Deliv Transl Res 2019; 9:469-481. [PMID: 29159691 DOI: 10.1007/s13346-017-0439-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hydrocortisone (HC), topical glucocorticoid along with hydroxytyrosol (HT), and anti-microbial- and anti-oxidant-loaded chitosan nanoparticles (CSNPs) were prepared in large scale and analyzed for their adverse effects on healthy human skin followed by repeated applications. Ten subjects were randomized to receive test (HC-HT CSNPs) and vehicle samples (aqueous (AQ) cream). They were applied on the arms for 28 days, and transepidermal water loss (TEWL), erythema intensity, and irritation score were measured. Blood samples were analyzed for blood hematology, blood biochemistry, and adrenal cortico-thyroid hormone (ACTH) levels. Skin biopsy was obtained to assess histopathological changes in the skin. HC-HT CSNP AQ cream was stored at 4, 25, and 45 °C for a period of 1 year, and its stability was assessed by monitoring their physical appearances, particle size, and pH. Spherical-shaped NPs were successfully upscaled using spinning-disc technology, with insignificant changes in particle size, zeta potential, and incorporation of drugs as compared to the well-established laboratory method. Particle size of HC-HT CSNPs was < 250 nm, and HC-HT CSNPs AQ cream remained stable when stored at 25 °C. TEWL and erythema intensity for 28-day application did not indicate any signs of local irritation, redness, and toxicity, which were confirmed by normal Draize skin irritation scoring system and skin hematoxylin and eosin (H&E) staining results. Comparative results of blood hematology, blood biochemistry, and adrenal cortico-thyroid hormone level at day 0 and day 28 were not significant, indicating non-systemic toxicity. In conclusion, HC-HT CSNP AQ cream is safe, well-tolerated, and non-toxic, which may be useful in treating atopic dermatitis.
Collapse
Affiliation(s)
- Muhammad Irfan Siddique
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.,Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| | - Adawiyah Jamil
- Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Mohd Hanif Zulfakar
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Syed Maaz Nadeem
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
9
|
Pashirova TN, Zueva IV, Petrov KA, Lukashenko SS, Nizameev IR, Kulik NV, Voloshina AD, Almasy L, Kadirov MK, Masson P, Souto EB, Zakharova LY, Sinyashin OG. Mixed cationic liposomes for brain delivery of drugs by the intranasal route: The acetylcholinesterase reactivator 2-PAM as encapsulated drug model. Colloids Surf B Biointerfaces 2018; 171:358-367. [PMID: 30059851 DOI: 10.1016/j.colsurfb.2018.07.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 11/30/2022]
Abstract
New mixed cationic liposomes based on L-α-phosphatidylcholine and dihexadecylmethylhydroxyethylammonium bromide (DHDHAB) were designed to overcome the BBB crossing by using the intranasal route. Synthesis and self-assembly of DHDHAB were performed. A low critical association concentration (0.01 mM), good solubilization properties toward hydrophobic dye Orange OT and antimicrobial activity against gram-positive bacteria Staphylococcus aureus (MIC=7.8 μg mL-1) and Bacillus cereus (MIC=7.8 μg mL-1), low hemolytic activities against human red blood cells (less than 10%) were achieved. Conditions for preparation of cationic vesicles and mixed liposomes with excellent colloidal stability at room temperature were determined. The intranasal administration of rhodamine B-loaded cationic liposomes was shown to increase bioavailability into the brain in comparison to the intravenous injection. The cholinesterase reactivator, 2-PAM, was used as model drug for the loading in cationic liposomes. 2-PAM-loaded cationic liposomes displayed high encapsulation efficiency (∼ 90%) and hydrodynamic diameter close to 100 nm. Intranasally administered 2-PAM-loaded cationic liposomes were effective against paraoxon-induced acetylcholinesterase inhibition in the brain. 2-PAM-loaded liposomes reactivated 12 ± 1% of brain acetylcholinesterase. This promising result opens the possibility to use marketed positively charged oximes in medical countermeasures against organophosphorus poisoning for reactivation of central acetylcholinesterase by implementing a non-invasive approach, via the "nose-brain" pathway.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia.
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia; Kazan Federal University, Kremlyovskaya St., 18, Kazan, 420008, Russia
| | - Svetlana S Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia
| | - Irek R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia; Kazan National Research Technological University, Karl Marx St., 68, 420015, Kazan, Russia
| | - Natalya V Kulik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia
| | - Aleksandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia
| | - Laszlo Almasy
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Marsil K Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia; Kazan National Research Technological University, Karl Marx St., 68, 420015, Kazan, Russia
| | - Patrick Masson
- Kazan Federal University, Kremlyovskaya St., 18, Kazan, 420008, Russia
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia
| |
Collapse
|
10
|
Singla P, Singh O, Chabba S, Aswal VK, Mahajan RK. Sodium deoxycholate mediated enhanced solubilization and stability of hydrophobic drug Clozapine in pluronic micelles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:143-154. [PMID: 29028506 DOI: 10.1016/j.saa.2017.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 05/04/2023]
Abstract
In this report, the solubilization behaviour of a hydrophobic drug Clozapine (CLZ) in micellar suspensions of pluronics having different hydrophilic lipophilic balance (HLB) ratios viz. P84, F127 and F108 in the absence and presence of bile salt sodium deoxycholate (SDC) has been studied. UV-Vis spectroscopy has been exploited to determine the solubilization capacity of the investigated micellar systems in terms of drug loading efficiency, average number of drug molecules solubilized per micelle (ns), partition coefficient (P) and standard free energy of solubilization (∆G°). The morphological and structural changes taking place in pluronics in different concentration regimes of SDC and with the addition of drug CLZ has been explored using dynamic light scattering (DLS) and small angle neutron scattering (SANS) measurements. The SANS results revealed that aggregation behaviour of pluronic-SDC mixed micelles gets improved in the presence of drug. The micropolarity measurements have been performed to shed light on the locus of solubilization of the drug in pure and mixed micellar systems. The compatibility between CLZ and drug carriers (pluronics and SDC) was confirmed using powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Among the investigated systems, P84-SDC mixed system was found to be highly efficient for CLZ loading. The long term stability data indicated that CLZ loaded P84-SDC mixed micellar formulation remained stable for 3months at room temperature. Further, it was revealed that the CLZ loaded P84-SDC mixed micelles are converted into CLZ loaded pure P84 micelles at 30-fold dilutions which remain stable up to 48-fold dilutions. The results from the present studies suggest that P84-SDC mixed micelles can serve as suitable delivery vehicles for hydrophobic drug CLZ.
Collapse
Affiliation(s)
- Pankaj Singla
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India
| | - Onkar Singh
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India
| | - Shruti Chabba
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India
| | - V K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rakesh Kumar Mahajan
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
11
|
Müller E, Zahnweh L, Estrine B, Zech O, Allolio C, Heilmann J, Kunz W. Oligoether carboxylate counterions: An innovative way towards surfactant ionic liquids. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Dhawan VV, Nagarsenker MS. Catanionic systems in nanotherapeutics – Biophysical aspects and novel trends in drug delivery applications. J Control Release 2017; 266:331-345. [DOI: 10.1016/j.jconrel.2017.09.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 09/28/2017] [Indexed: 01/10/2023]
|
13
|
Gosangi M, Rapaka H, Mujahid TY, Patri SV. Novel 1,2,3-triazolium-based dicationic amphiphiles synthesized using click-chemistry approach for efficient plasmid delivery. MEDCHEMCOMM 2017; 8:989-999. [PMID: 30108814 PMCID: PMC6072356 DOI: 10.1039/c6md00699j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/18/2017] [Indexed: 12/17/2022]
Abstract
Herein, we report the synthesis, characterization and evaluation of the transfection efficiencies of a series of dicationic amphiphiles designed to construct quaternary ammonium ion-based cationic lipids varying in chain length of the hydrophobic back bone connected individually through head group to a 1,2,3-triazolium cation consisting of 2-hydroxy ethyl chain as substitution. Accordingly, three dicationic amphiphiles were synthesized by "click chemistry" approach and formulated to bilayered vesicles using DOPE as a co-lipid. The transfection efficacies of these novel lipid formulations were measured and correlated with the results obtained from various physicochemical techniques. Importantly, the observed gradient in the activity profile, where the transfection potential increased with decreasing chain length of the lipid hydrophobic back bone, highlights the synergistic interplay of the lipid alkyl chain length in coordination with charge delocalization in modulating the transfection potency of these 1,2,3-triazolium-based lipids.
Collapse
Affiliation(s)
| | - Hithavani Rapaka
- National Institute of Technology , Warangal-506004 , Telangana , India
| | - Thasneem Yoosuf Mujahid
- CSIR-Centre for Cellular and Molecular Biology , Uppal Road , Hyderabad-500007 , Telangana , India .
| | | |
Collapse
|
14
|
Hollmann A, Delfederico L, Santos NC, Disalvo EA, Semorile L. Interaction of S-layer proteins of Lactobacillus kefir with model membranes and cells. J Liposome Res 2017; 28:117-125. [DOI: 10.1080/08982104.2017.1281950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Axel Hollmann
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Argentina,
- Laboratory of Biointerfaces and Biomimetic Systems- CITSE – National University of Santiago del Estero and CONICET, Argentina, and
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Lucrecia Delfederico
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Argentina,
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - E. Anibal Disalvo
- Laboratory of Biointerfaces and Biomimetic Systems- CITSE – National University of Santiago del Estero and CONICET, Argentina, and
| | - Liliana Semorile
- Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Argentina,
| |
Collapse
|
15
|
Bhattarai R, Sutradhar T, Roy B, Guha P, Chettri P, Mandal AK, Bykov AG, Akentiev AV, Noskov BA, Panda AK. Double-Tailed Cystine Derivatives as Novel Substitutes of Phospholipids with Special Reference to Liposomes. J Phys Chem B 2016; 120:10744-10756. [PMID: 27659807 DOI: 10.1021/acs.jpcb.6b06413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ravi Bhattarai
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Tanushree Sutradhar
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Biplab Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Pritam Guha
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Priyam Chettri
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | | | - Alexey G. Bykov
- Department
of Colloid Chemistry, St. Petersburg State University, Universitetskii
pr. 26, 198504 St.
Petersburg, Russia
| | - Alexander V. Akentiev
- Department
of Colloid Chemistry, St. Petersburg State University, Universitetskii
pr. 26, 198504 St.
Petersburg, Russia
| | - Boris A. Noskov
- Department
of Colloid Chemistry, St. Petersburg State University, Universitetskii
pr. 26, 198504 St.
Petersburg, Russia
| | | |
Collapse
|
16
|
Namvar A, Bolhassani A, Khairkhah N, Motevalli F. Physicochemical properties of polymers: An important system to overcome the cell barriers in gene transfection. Biopolymers 2016; 103:363-75. [PMID: 25761628 DOI: 10.1002/bip.22638] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
Delivery of the macromolecules including DNA, miRNA, and antisense oligonucleotides is typically mediated by carriers due to the large size and negative charge. Different physical (e.g., gene gun or electroporation), and chemical (e.g., cationic polymer or lipid) vectors have been already used to improve the efficiency of gene transfer. Polymer-based DNA delivery systems have attracted special interest, in particular via intravenous injection with many intra- and extracellular barriers. The recent progress has shown that stimuli-responsive polymers entitled as multifunctional nucleic acid vehicles can act to target specific cells. These nonviral carriers are classified by the type of stimulus including reduction potential, pH, and temperature. Generally, the physicochemical characterization of DNA-polymer complexes is critical to enhance the transfection potency via protection of DNA from nuclease digestion, endosomal escape, and nuclear localization. The successful clinical applications will depend on an exact insight of barriers in gene delivery and development of carriers overcoming these barriers. Consequently, improvement of novel cationic polymers with low toxicity and effective for biomedical use has attracted a great attention in gene therapy. This article summarizes the main physicochemical and biological properties of polyplexes describing their gene transfection behavior, in vitro and in vivo. In this line, the relative efficiencies of various cationic polymers are compared.
Collapse
Affiliation(s)
- Ali Namvar
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | |
Collapse
|
17
|
New cationic vesicles prepared with double chain surfactants from arginine: Role of the hydrophobic group on the antimicrobial activity and cytotoxicity. Colloids Surf B Biointerfaces 2016; 141:19-27. [DOI: 10.1016/j.colsurfb.2016.01.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/21/2022]
|
18
|
Liang CH, Yeh LH, Liao PW, Chou TH. Characterization and in vitro biocompatibility of catanionic assemblies formed with oppositely charged dicetyl amphiphiles. Colloids Surf B Biointerfaces 2015; 126:10-7. [DOI: 10.1016/j.colsurfb.2014.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/08/2023]
|
19
|
Apoptosis induction and anti-cancer activity of LeciPlex formulations. Cell Oncol (Dordr) 2014; 37:339-51. [DOI: 10.1007/s13402-014-0183-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2014] [Indexed: 10/24/2022] Open
|
20
|
Chou TH, Liang CH, Lee YC, Yeh LH. Effects of lipid composition on physicochemical characteristics and cytotoxicity of vesicles composed of cationic and anionic dialkyl lipids. Phys Chem Chem Phys 2014; 16:1545-53. [DOI: 10.1039/c3cp54176b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Hong B, Lai J, Leclercq L, Collinet-Fressancourt M, Aubry JM, Bauduin P, Nardello-Rataj V. Binary and Ternary Phase Behaviors of Short Double-Chain Quaternary Ammonium Amphiphiles: Surface Tension, Polarized Optical Microscopy, and SAXS Investigations. J Phys Chem B 2013; 117:14732-42. [DOI: 10.1021/jp406062b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Bing Hong
- Université Lille 1 and ENSCL, EA 4478
Chimie Moléculaire et Formulation, F-59655 Villeneuve d’Ascq Cedex, France
| | - Jonathan Lai
- Institut de Chimie
Séparative de Marcoule, UMR 5257
(CEA/CNRS/UM2/ENSCM) BP 17171, 30207 Bagnols sur Cèze Cedex, France
| | - Loïc Leclercq
- Université Lille 1 and ENSCL, EA 4478
Chimie Moléculaire et Formulation, F-59655 Villeneuve d’Ascq Cedex, France
| | - Marion Collinet-Fressancourt
- Université Lille 1 and ENSCL, EA 4478
Chimie Moléculaire et Formulation, F-59655 Villeneuve d’Ascq Cedex, France
| | - Jean-Marie Aubry
- Université Lille 1 and ENSCL, EA 4478
Chimie Moléculaire et Formulation, F-59655 Villeneuve d’Ascq Cedex, France
| | - Pierre Bauduin
- Institut de Chimie
Séparative de Marcoule, UMR 5257
(CEA/CNRS/UM2/ENSCM) BP 17171, 30207 Bagnols sur Cèze Cedex, France
| | - Véronique Nardello-Rataj
- Université Lille 1 and ENSCL, EA 4478
Chimie Moléculaire et Formulation, F-59655 Villeneuve d’Ascq Cedex, France
| |
Collapse
|
22
|
Kaur R, Kumar S, Aswal VK, Mahajan RK. Influence of headgroup on the aggregation and interactional behavior of twin-tailed cationic surfactants with pluronics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11821-33. [PMID: 23978237 DOI: 10.1021/la401864p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The surface tension measurements have been employed to characterize the micellar and interfacial behavior of pure and mixed systems of twin-tailed cationic surfactants: dimethylene bis(decyldimethylammonium bromide) (10-2-10), didecydimethylammonium bromide (DDAB), and 1,3-didecyl-2-methylimidazolium chloride (DDIC) with pluronics P84 and F108 in the aqueous solution. The interactions of each surfactant with both pluronics are found to be nonideal and synergistic except for the mixed system of 10-2-10 + F108, for which interactions are antagonistic and every interaction has been studied on the basis of headgroup disparity. Dynamic light scattering (DLS), zeta (ζ) potential, and small angle neutron scattering (SANS) measurements have been used to determine the influence of the mixing ratio on the morphology of the various mixed aggregates that are formed. Pure DDAB is found to form unilamellar vesicles whereas pure 10-2-10 and DDIC form prolate ellipsoidal micelles. The unilamellar vesicles of DDAB are destructed to yield spherical mixed micelles on addition of pluronics via expansion or contraction of vesicles. However, the pure pluronics and their mixed systems with 10-2-10 and DDIC form charged spherical micelles, and charge is confirmed by thenfractional charge and ζ values. The ζ values of pure surfactants are found to decrease on addition of pluronics, indicating a decrease in surface charge on inclusion of pluronics.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry, Guru Nanak Dev University , Amritsar 143005, India
| | | | | | | |
Collapse
|
23
|
Liang CH, Ho WY, Yeh LH, Cheng YS, Chou TH. Effects of 1-hexadecyl-3-methylimidazolium ionic liquids on the physicochemical characteristics and cytotoxicity of phosphatidylcholine vesicles. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.08.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Design considerations for PAMAM dendrimer therapeutics. Bioorg Med Chem Lett 2013; 23:2872-5. [DOI: 10.1016/j.bmcl.2013.03.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/13/2022]
|
25
|
Nogueira DR, del Carmen Morán M, Mitjans M, Pérez L, Ramos D, de Lapuente J, Pilar Vinardell M. Lysine-based surfactants in nanovesicle formulations: the role of cationic charge position and hydrophobicity in in vitro cytotoxicity and intracellular delivery. Nanotoxicology 2013; 8:404-21. [PMID: 23560805 DOI: 10.3109/17435390.2013.793779] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding nanomaterial interactions within cells is of increasing importance for assessing their toxicity and cellular transport. Here, the authors developed nanovesicles containing bioactive cationic lysine-based amphiphiles and assessed whether these cationic compounds increase the likelihood of intracellular delivery and modulate toxicity. Different cytotoxic responses were found among the formulations, depending on surfactant, cell line and endpoint assayed. The induction of mitochondrial dysfunction, oxidative stress and apoptosis were the general mechanisms underlying cytotoxicity. Fluorescence microscopy analysis demonstrated that nanovesicles were internalised by HeLa cells and evidenced that their ability to release endocytosed materials into cell cytoplasm depends on the structural parameters of amphiphiles. The cationic charge position and hydrophobicity of surfactants determine the nanovesicle interactions within the cell and, thus, the resulting toxicity and intracellular behaviour after cell uptake of the nanomaterial. The insights into some toxicity mechanisms of these new nanomaterials contribute in reducing the uncertainty surrounding their potential health hazards.
Collapse
Affiliation(s)
- Daniele Rubert Nogueira
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona , Barcelona , Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
New cationic nanovesicular systems containing lysine-based surfactants for topical administration: Toxicity assessment using representative skin cell lines. Eur J Pharm Biopharm 2013; 83:33-43. [DOI: 10.1016/j.ejpb.2012.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/03/2012] [Accepted: 09/21/2012] [Indexed: 01/20/2023]
|
27
|
Rosado C, Silva C, Reis CP. Hydrocortisone-loaded poly(ε-caprolactone) nanoparticles for atopic dermatitis treatment. Pharm Dev Technol 2012; 18:710-8. [DOI: 10.3109/10837450.2012.712537] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Colomer A, Pinazo A, García MT, Mitjans M, Vinardell MP, Infante MR, Martínez V, Pérez L. pH-Sensitive surfactants from lysine: assessment of their cytotoxicity and environmental behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5900-5912. [PMID: 22428847 DOI: 10.1021/la203974f] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna . All surfactants yielded EC(50) values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO(2) headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as "readily biodegradable compounds".
Collapse
Affiliation(s)
- Aurora Colomer
- Departamento de Tecnología Química y de Tensioactivos, IQAC, CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chang CH, Liang CH, Hsieh YY, Chou TH. Molecular Packing and Lateral Interactions of Distearoylphosphatidylcholine with Dihexadecyldimethylammonium Bromide in Langmuir Monolayers and Vesicles. J Phys Chem B 2012; 116:2455-63. [DOI: 10.1021/jp211264h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Hua Liang
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan
717, Taiwan
| | - Yu-Ying Hsieh
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Tzung-Han Chou
- Department of Chemical and Materials
Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| |
Collapse
|
30
|
Samadikhah HR, Majidi A, Nikkhah M, Hosseinkhani S. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes. Int J Nanomedicine 2011; 6:2275-83. [PMID: 22072865 PMCID: PMC3205124 DOI: 10.2147/ijn.s23074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Cationic liposomes (CLs) are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the deficiencies. Materials and methods CLs and magnetic cationic liposomes (MCLs) were prepared using the freeze-dried empty liposome method. Luciferase-harboring vectors (pGL3) were transferred into liposomes and the transfection efficiencies were determined by luciferase assay. Firefly luciferase is one of most popular reporter genes often used to measure the efficiency of gene transfer in vivo and in vitro. Different formulations of liposomes have been used for delivery of different kinds of gene reporters. Lipoplex (liposome–plasmid DNA complexes) formation was monitored by gel retardation assay. Size and charge of lipoplexes were determined using particle size analysis. Chinese hamster ovary cells were transfected by lipoplexes (liposome-pGL3); transfection efficiency and gene expression level was evaluated by luciferase assay. Results High transfection efficiency of plasmid by CLs and novel nanomagnetic CLs was achieved. Moreover, lipoplexes showed less cytotoxicity than polyethyleneimine and Lipofectamine™. Conclusion Novel liposome compositions (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dioctadecyldimethylammonium bromide [DOAB] and DPPC/cholesterol/DOAB) with high transfection efficiency can be useful in gene delivery in vitro. MCLs can also be used for targeted gene delivery, due to magnetic characteristic for conduction of genes or drugs to target organs.
Collapse
Affiliation(s)
- Hamid Reza Samadikhah
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
31
|
Scarioti GD, Lubambo A, Feitosa JP, Sierakowski MR, Bresolin TM, de Freitas RA. Nanocapsule of cationic liposomes obtained using “in situ” acrylic acid polymerization: Stability, surface charge and biocompatibility. Colloids Surf B Biointerfaces 2011; 87:267-72. [DOI: 10.1016/j.colsurfb.2011.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/25/2011] [Accepted: 05/16/2011] [Indexed: 11/28/2022]
|
32
|
Weng Y, Guo X, Gregory RL, Xie D. Preparation and evaluation of an antibacterial dental cement containing quaternary ammonium salts. J Appl Polym Sci 2011. [DOI: 10.1002/app.34366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 2011; 63:470-91. [PMID: 21315122 DOI: 10.1016/j.addr.2011.01.012] [Citation(s) in RCA: 472] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 01/29/2023]
Abstract
Skin is a widely used route of delivery for local and systemic drugs and is potentially a route for their delivery as nanoparticles. The skin provides a natural physical barrier against particle penetration, but there are opportunities to deliver therapeutic nanoparticles, especially in diseased skin and to the openings of hair follicles. Whilst nanoparticle drug delivery has been touted as an enabling technology, its potential in treating local skin and systemic diseases has yet to be realised. Most drug delivery particle technologies are based on lipid carriers, i.e. solid lipid nanoparticles and nanoemulsions of around 300 nm in diameter, which are now considered microparticles. Metal nanoparticles are now recognized for seemingly small drug-like characteristics, i.e. antimicrobial activity and skin cancer prevention. We present our unpublished clinical data on nanoparticle penetration and previously published reports that support the hypothesis that nanoparticles >10nm in diameter are unlikely to penetrate through the stratum corneum into viable human skin but will accumulate in the hair follicle openings, especially after massage. However, significant uptake does occur after damage and in certain diseased skin. Current chemistry limits both atom by atom construction of complex particulates and delineating their molecular interactions within biological systems. In this review we discuss the skin as a nanoparticle barrier, recent work in the field of nanoparticle drug delivery to the skin, and future directions currently being explored.
Collapse
|
34
|
Feitosa E, Winnik FM. Interaction between Pluronic F127 and dioctadecyldimethylammonium bromide (DODAB) vesicles studied by differential scanning calorimetry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17852-17857. [PMID: 21049920 DOI: 10.1021/la102603a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A number of fundamental studies on the interactions between lipid bilayers and (ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide) copolymers (PEO-PPO-PEO, Pluronics) have been carried out recently as model systems for the complex behavior of cell membranes with this class of polymers often employed in pharmaceutical formulations. We report here a study by differential scanning calorimetry (DSC) of the interactions in water between Pluronic F127 (F127), and the cationic vesicles of di-n-octadecyldimethylammonium bromide (DODAB), as a function of concentration of the two components (DODAB 0.1 and 1.0 mM; F127 0.1 to 5.0 mM) and of the sample preparation protocol. The DSC studies follow the critical micellization temperature (cmt ≈ 27 °C at 1.0 mM) of F127 and the gel-liquid crystal transition (T(m) ≈ 45 °C) of the DODAB bilayer and of F127/DODAB mixtures. Upon heating past T(m), vesicle/polymer mixtures undergo an irreversible conversion into mixed DODAB/F127 micelles and/or F127-bearing vesicles, depending on the relative amount of each component, together with, in some cases, residual intact F127 micelles or DODAB vesicles. Sample preparation protocol is shown to have little impact on the composition of mixed systems once they are heated above T(m).
Collapse
Affiliation(s)
- Eloi Feitosa
- Physics Department, IBILCE/UNESP, São José do Rio Preto-SP, Brazil.
| | | |
Collapse
|
35
|
Chou TH, Liang CH. The Molecular Effects of Aloe-Emodin (AE)/Liposome-AE on Human Nonmelanoma Skin Cancer Cells and Skin Permeation. Chem Res Toxicol 2009; 22:2017-28. [DOI: 10.1021/tx900318a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tzung-Han Chou
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Pao-An, Jen-Te Hsiang, Tainan 717, Taiwan
| | - Chia-Hua Liang
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Pao-An, Jen-Te Hsiang, Tainan 717, Taiwan
| |
Collapse
|