1
|
Jalali P, Nowroozi A, Moradi S, Shahlaei M. Exploration of lipid bilayer mechanical properties using molecular dynamics simulation. Arch Biochem Biophys 2024; 761:110151. [PMID: 39265694 DOI: 10.1016/j.abb.2024.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Important biological structures known for their exceptional mechanical qualities, lipid bilayers are essential to many cellular functions. Fluidity, elasticity, permeability, stiffness, tensile strength, compressibility, shear viscosity, line tension, and curvature elasticity are some of the fundamental characteristics affecting their behavior. The purpose of this review is to examine these characteristics in more detail by molecular dynamics simulation, elucidating their importance and the elements that lead to their appearance in lipid bilayers. Comprehending the mechanical characteristics of lipid bilayers is critical for creating medications, drug delivery systems, and biomaterials that interact with biological membranes because it allows one to understand how these materials respond to different stresses and deformations. The influence of mechanical characteristics on important lipid bilayer properties is examined in this review. The mechanical properties of lipid bilayers were clarified through the use of molecular dynamics simulation analysis techniques, including bilayer thickness, stress-strain analysis, lipid bilayer area compressibility, membrane bending rigidity, and time- or ensemble-averaged the area per lipid evaluation. We explain the significance of molecular dynamics simulation analysis methods, providing important new information about the stability and dynamic behavior of the bilayer. In the end, we hope to use molecular dynamics simulation to provide a comprehensive understanding of the mechanical properties and behavior of lipid bilayers, laying the groundwork for further studies and applications. Taken together, careful investigation of these mechanical aspects deepens our understanding of the adaptive capacities and functional roles of lipid bilayers in biological environments.
Collapse
Affiliation(s)
- Parvin Jalali
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Nowroozi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Pawlowska D, Erdmann N, Folz M, Langner A, Dobner B, Wölk C, Brezesinski G. Ionizable lipids based on branched fatty acids - An explorative study on Langmuir monolayers. Eur J Pharm Biopharm 2024; 200:114338. [PMID: 38789063 DOI: 10.1016/j.ejpb.2024.114338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Ionizable lipids are a class of pharmaceutical excipients with a main application in lipid nanoparticles for nucleic acid delivery. New ionizable lipids are needed to tune characteristics of lipid-based nucleic acid delivery systems, e.g. stability, nucleic acid loading capacity and binding strength, as well as bio-distribution. Herein, we present the synthesis of three novel ionizable lipids as putative excipients for lipid-based nucleic acid delivery systems. Langmuir monolayer experiments with classical surface pressure/area isotherm evaluation were used to understand the self-assembly behavior of the lipids. Additional experiments with surface sensitive techniques, namely grazing incidence x-ray scattering and infrared reflection-absorption spectroscopy (IRRAS), were performed to understand structural characteristics of lipid associates. The latter technique was also used to investigate the nucleic acid binding process between DNA and the ionizable lipids. Finally, first transfection experiments with the novel lipids formulated as cationic liposomes were performed providing first efficacy data. Although the alkyl chain pattern was comparable for all three ionizable lipids, the results demonstrated that with increasing head-group size the DNA binding capacity changed and the alkyl chain fluidity was increased. The lipid with the lowest phase transition temperature and the smallest packing parameter showed the highest DNA transfer efficiency.
Collapse
Affiliation(s)
- Dorota Pawlowska
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nicole Erdmann
- Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Manuela Folz
- Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Andreas Langner
- Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Bodo Dobner
- Martin Luther University (MLU) Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Christian Wölk
- Leipzig University, Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Eilenburger Strasse 15a, 04317 Leipzig, Germany.
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Bykov AG, Panaeva MA, Milyaeva OY, Michailov AV, Rafikova AR, Guzman E, Rubio R, Miller R, Noskov BA. Structural changes in layers of lipid mixtures at low surface tensions. Chem Phys Lipids 2024; 258:105365. [PMID: 38092233 DOI: 10.1016/j.chemphyslip.2023.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Layers of pulmonary lipids on an aqueous substrate at non-equilibrium conditions can decrease the surface tension of water to quite low values. This is connected with different relaxation processes occurring at the interface and the associated changes in the surface layer structure. Results of measurements by the combination of methods like surface rheology, ellipsometry, Brewster angle microscopy, and IRRAS for spread layers of lipid mixtures open a possibility to specify the dynamics of structural changes at conditions close to the physiological state. At sufficiently low surface tension values (below 5 mN/m) significant changes in the ellipsometric signal were observed for pure DPPC layers, which can be related to a transition from 2D to 3D structures caused by the layer folding. The addition of other lipids can accelerate the relaxation processes connected with squeezing-out of molecules or multilayer stacks formation hampering thereby a decrease of surface tension down to low values corresponding to the folding of the monolayer.
Collapse
Affiliation(s)
- A G Bykov
- St. Petersburg State University, St. Petersburg, the Russian Federation.
| | - M A Panaeva
- St. Petersburg State University, St. Petersburg, the Russian Federation
| | - O Y Milyaeva
- St. Petersburg State University, St. Petersburg, the Russian Federation
| | - A V Michailov
- St. Petersburg State University, St. Petersburg, the Russian Federation
| | - A R Rafikova
- St. Petersburg State University, St. Petersburg, the Russian Federation
| | - E Guzman
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - R Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - R Miller
- Institute for Soft Matter Physics, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - B A Noskov
- St. Petersburg State University, St. Petersburg, the Russian Federation
| |
Collapse
|
4
|
Schiaffarino O, Valdivieso González D, García-Pérez IM, Peñalva DA, Almendro-Vedia VG, Natale P, López-Montero I. Mitochondrial membrane models built from native lipid extracts: Interfacial and transport properties. Front Mol Biosci 2022; 9:910936. [PMID: 36213125 PMCID: PMC9538489 DOI: 10.3389/fmolb.2022.910936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
The mitochondrion is an essential organelle enclosed by two membranes whose functionalities depend on their very specific protein and lipid compositions. Proteins from the outer mitochondrial membrane (OMM) are specialized in mitochondrial dynamics and mitophagy, whereas proteins of the inner mitochondrial membrane (IMM) have dedicated functions in cellular respiration and apoptosis. As for lipids, the OMM is enriched in glycerophosphatidyl choline but cardiolipin is exclusively found within the IMM. Though the lipid topology and distribution of the OMM and IMM are known since more than four decades, little is known about the interfacial and dynamic properties of the IMM and OMM lipid extracts. Here we build monolayers, supported bilayers and giant unilamellar vesicles (GUVs) of native OMM and IMM lipids extracts from porcine heart. Additionally, we perform a comparative analysis on the interfacial, phase immiscibility and mechanical properties of both types of extract. Our results show that IMM lipids form more expanded and softer membranes than OMM lipids, allowing a better understanding of the physicochemical and biophysical properties of mitochondrial membranes.
Collapse
Affiliation(s)
- Olivia Schiaffarino
- Departamento Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - David Valdivieso González
- Departamento Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
| | | | - Daniel A. Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), ConsejoNacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Víctor G. Almendro-Vedia
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Paolo Natale
- Departamento Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- *Correspondence: Iván López-Montero, ; Paolo Natale,
| | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Iván López-Montero, ; Paolo Natale,
| |
Collapse
|
5
|
Vélez M. How Does the Spatial Confinement of FtsZ to a Membrane Surface Affect Its Polymerization Properties and Function? Front Microbiol 2022; 13:757711. [PMID: 35592002 PMCID: PMC9111741 DOI: 10.3389/fmicb.2022.757711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022] Open
Abstract
FtsZ is the cytoskeletal protein that organizes the formation of the septal ring and orchestrates bacterial cell division. Its association to the membrane is essential for its function. In this mini-review I will address the question of how this association can interfere with the structure and dynamic properties of the filaments and argue that its dynamics could also remodel the underlying lipid membrane through its activity. Thus, lipid rearrangement might need to be considered when trying to understand FtsZ’s function. This new element could help understand how FtsZ assembly coordinates positioning and recruitment of the proteins forming the septal ring inside the cell with the activity of the machinery involved in peptidoglycan synthesis located in the periplasmic space.
Collapse
Affiliation(s)
- Marisela Vélez
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
6
|
Evaluation of the impact of carbonaceous particles in the mechanical performance of lipid Langmuir monolayers. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Monolayers of Cholesterol and Cholesteryl Stearate at the Water/Vapor Interface: A Physico-Chemical Study of Components of the Meibum Layer. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Langmuir monolayers containing different amounts of cholesterol and cholesteryl stearate were studied at two different temperatures (24 °C and 35 °C). The main goal was to contribute towards the understanding of how the variations in the chemical composition may affect the physico-chemical properties of these specific lipid monolayers. The model mixture was chosen considering that cholesteryl esters are present in cell membranes and some other biological systems, including human tear lipids. Therefore, an investigation into the effect of the lipid monolayer composition on their interfacial properties may elucidate some of the fundamental reasons for the deficiencies in cell membranes and tear film functioning in vivo. The experimental results have shown that the molar ratio of the mixture plays a crucial role in the modulation of the Langmuir film properties. The condensing effects of the cholesterol and the interactions between the lipids in the monolayer were the main factors altering the monolayer response to dilatational deformation. The modification of the mixture compositions leads to significant changes in the Langmuir films and the mechanical performance, altering the ability of the monolayer to reduce the surface tension and the viscoelastic properties of the monolayers. This suggests that subtle modifications of the biomembrane composition may significantly alter its physiological function.
Collapse
|
8
|
Dynamic properties and relaxation processes in surface layer of pulmonary surfactant solutions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Physical states and thermodynamic properties of model gram-negative bacterial inner membranes. Chem Phys Lipids 2019; 218:57-64. [DOI: 10.1016/j.chemphyslip.2018.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/16/2018] [Accepted: 12/05/2018] [Indexed: 01/27/2023]
|
10
|
Bykov A, Loglio G, Ravera F, Liggieri L, Miller R, Noskov B. Dilational surface elasticity of spread monolayers of pulmonary lipids in a broad range of surface pressure. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Understanding the formation of supported lipid bilayers via vesicle fusion—A case that exemplifies the need for the complementary method approach (Review). Biointerphases 2016; 11:020801. [DOI: 10.1116/1.4944830] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Kumar C, Viswanath P. Dilatational rheology studies on a semicrystalline ferroelectric copolymer at the air–water interface. RSC Adv 2016. [DOI: 10.1039/c5ra27184c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dilatational rheology of Langmuir film of semicrystalline copolymer studied using oscillatory barrier technique show nonlinear behaviour. Evidence for low temperature phase transition, strain hardening and cross over behaviour with frequency is seen.
Collapse
Affiliation(s)
- Chandan Kumar
- Center for Nano and Soft Matter Sciences
- Bangalore
- India
| | - P. Viswanath
- Center for Nano and Soft Matter Sciences
- Bangalore
- India
| |
Collapse
|
13
|
Effect of silica nanoparticles on the interfacial properties of a canonical lipid mixture. Colloids Surf B Biointerfaces 2015; 136:971-80. [DOI: 10.1016/j.colsurfb.2015.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/19/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022]
|
14
|
Yang J, Huang J, Zeng H, Chen L. Surface pressure affects B-hordein network formation at the air–water interface in relation to gastric digestibility. Colloids Surf B Biointerfaces 2015; 135:784-792. [DOI: 10.1016/j.colsurfb.2015.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/28/2015] [Accepted: 08/20/2015] [Indexed: 01/12/2023]
|
15
|
Catapano ER, Lillo MP, García Rodríguez C, Natale P, Langevin D, Monroy F, López-Montero I. Thermomechanical transitions of egg-ceramide monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3912-3918. [PMID: 25763506 DOI: 10.1021/acs.langmuir.5b00229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ceramides have unique biophysical properties. Their high melting temperature and their ability to form lateral domains have converted ceramides into the paradigm of rigid lipids. Here, using shear surface rheology of egg-ceramide Langmuir monolayers, a solid to fluid transition was evidenced as a vanishing shear rigidity at lower temperatures than the lipid melting temperature. Such a mechanical transition, which depends on the lipid lateral pressure, was found in a broad range temperature (40-50 °C). The solid to fluid transition was correlated to a LC to LC+LE phase transition, as confirmed by BAM experiments. Interestingly, together with the softening transition, a supercooling process compatible with a glassy behavior was found upon freezing. A new phase scenario is then depicted that broadens the mechanical behavior of natural ceramides. The phase diversity of ceramides might have important implications in their physiological roles.
Collapse
Affiliation(s)
- Elisa R Catapano
- †Departamento de Química Física I, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
- ‡Instituto de Investigación Hospital 12 de Octubre (i+12), Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - M P Lillo
- §Grupo de Biofísica Molecular, Instituto Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - C García Rodríguez
- §Grupo de Biofísica Molecular, Instituto Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - P Natale
- †Departamento de Química Física I, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
- ‡Instituto de Investigación Hospital 12 de Octubre (i+12), Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - D Langevin
- ∥Laboratoire de Physique des Solides, Université Paris-Sud, Rue Nicolas Appert Bâtiment 510, 91405 Orsay, France
| | - F Monroy
- †Departamento de Química Física I, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
- ‡Instituto de Investigación Hospital 12 de Octubre (i+12), Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - I López-Montero
- †Departamento de Química Física I, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
- ‡Instituto de Investigación Hospital 12 de Octubre (i+12), Avda. de Córdoba s/n, 28041 Madrid, Spain
| |
Collapse
|
16
|
Castro BM, Prieto M, Silva LC. Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 2014; 54:53-67. [PMID: 24513486 DOI: 10.1016/j.plipres.2014.01.004] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
Ceramides are involved in a variety of cellular processes and in disease. Their biological functions are thought to depend on ceramides' unique biophysical properties, which promote strong alterations of cell membrane properties and consequent triggering of signaling events. Over the last decades, efforts were made to understand the impact of ceramide on membrane biophysical features. Several studies, performed in a multitude of membrane models, address ceramides' specific interactions, the effect of their acyl chain structure and the influence of membrane lipid composition and properties on ceramide biophysical outcome. In this review, a rationale for the multiple and complex changes promoted by ceramide is provided, highlighting, on a comprehensive and critical manner, the interactions between ceramides and specific lipids and/or lipid phases. Focus is also given to the interplay between ceramide and cholesterol, particularly in lipid raft-mimicking mixtures, an issue of intense debate due to the urgent need to understand the biophysical impact of ceramide formation in models resembling the cell membrane. The implications of ceramide-induced biophysical changes on lipid-protein interactions and cell signaling are also discussed, together with the emerging evidence for the existence of ceramide-gel like domains in cellular membranes.
Collapse
Affiliation(s)
- Bruno M Castro
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Liana C Silva
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
17
|
Almendro-Vedia VG, Monroy F, Cao FJ. Mechanics of constriction during cell division: a variational approach. PLoS One 2013; 8:e69750. [PMID: 23990888 PMCID: PMC3749217 DOI: 10.1371/journal.pone.0069750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
During symmetric division cells undergo large constriction deformations at a stable midcell site. Using a variational approach, we investigate the mechanical route for symmetric constriction by computing the bending energy of deformed vesicles with rotational symmetry. Forces required for constriction are explicitly computed at constant area and constant volume, and their values are found to be determined by cell size and bending modulus. For cell-sized vesicles, considering typical bending modulus of [Formula: see text], we calculate constriction forces in the range [Formula: see text]. The instability of symmetrical constriction is shown and quantified with a characteristic coefficient of the order of [Formula: see text], thus evidencing that cells need a robust mechanism to stabilize constriction at midcell.
Collapse
Affiliation(s)
- Victor G. Almendro-Vedia
- Departamento de Física Atómica, Molecular y Nuclear and Departamento de Química Física I, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física I, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| | - Francisco J. Cao
- Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense, Avenida Complutense s/n, Madrid, Spain
| |
Collapse
|
18
|
Mell M, Moleiro LH, Hertle Y, Fouquet P, Schweins R, López-Montero I, Hellweg T, Monroy F. Bending stiffness of biological membranes: what can be measured by neutron spin echo? THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:75. [PMID: 23852577 DOI: 10.1140/epje/i2013-13075-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 04/10/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Large vesicles obtained by the extrusion method represent adequate membrane models to probe membrane dynamics with neutron radiation. Particularly, the shape fluctuations around the spherical average topology can be recorded by neutron spin echo (NSE). In this paper we report on the applicable theories describing the scattering contributions from bending-dominated shape fluctuations in diluted vesicle dispersions, with a focus on the relative relevance of the master translational mode with respect to the internal fluctuations. Different vesicle systems, including bilayer and non-bilayer membranes, have been scrutinized. We describe the practical ranges where the exact theory of bending fluctuations is applicable to obtain the values of the bending modulus from experiments, and we discuss about the possible internal modes that could be alternatively contributing to shape fluctuations.
Collapse
Affiliation(s)
- Michael Mell
- Departamento de Química Física I, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
López-Montero I, Catapano ER, Espinosa G, Arriaga LR, Langevin D, Monroy F. Shear and compression rheology of Langmuir monolayers of natural ceramides: solid character and plasticity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6634-6644. [PMID: 23621106 DOI: 10.1021/la400448x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The present work addresses the fundamental question of membrane elasticity of ceramide layers with a special focus on the plastic regime. The compression and shear viscoelasticity of egg-ceramide Langmuir monolayers were investigated using oscillatory surface rheology in the linear regime and beyond. High compression and shear moduli were measured at room temperature-a clear signature for a solid behavior. At deformations larger than one per mill, egg-ceramide monolayers display plastic features characterized by a decrease of the storage modulus followed by a viscous regime typical of fluid lipids. This behavior is accompanied by a marked decrease of the loss modulus with increasing stress above a yield point. The results permit to univocally classify ceramide monolayers as 2D solids able to undergo plastic deformations, at the difference of typical fluid lipid monolayers. These unusual features are likely to have consequences in the mechanical behavior of ceramide-rich emplacements in biological membranes.
Collapse
Affiliation(s)
- Iván López-Montero
- Departamento de Química Física I, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
López‐Montero I, López‐Navajas P, Mingorance J, Rivas G, Vélez M, Vicente M, Monroy F. Intrinsic disorder of the bacterial cell division protein ZipA: coil‐to‐brush conformational transition. FASEB J 2013; 27:3363-75. [DOI: 10.1096/fj.12-224337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Pilar López‐Navajas
- Centro de Investigaciones Biológicas (CIB)Consejo Superior de Investigaciones Cientificas (CSIC)MadridSpain
| | | | - Germán Rivas
- Centro de Investigaciones Biológicas (CIB)Consejo Superior de Investigaciones Cientificas (CSIC)MadridSpain
| | - Marisela Vélez
- Instituto de Catálisis y PetroleoquímicaCSICCampus de CantoblancoMadridSpain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA‐Nanociencia)Facultad de CienciasCampus de CantoblancoMadridSpain
| | - Miguel Vicente
- Centro Nacional de Biotecnología (CNB)CSICCampus de CantoblancoMadridSpain
| | - Francisco Monroy
- Departamento de Química Física IUniversidad ComplutenseMadridSpain
| |
Collapse
|
21
|
Rivas G, Alfonso C, Jiménez M, Monterroso B, Zorrilla S. Macromolecular interactions of the bacterial division FtsZ protein: from quantitative biochemistry and crowding to reconstructing minimal divisomes in the test tube. Biophys Rev 2013; 5:63-77. [PMID: 28510160 DOI: 10.1007/s12551-013-0115-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022] Open
Abstract
The division of Escherichia coli is an essential process strictly regulated in time and space. It requires the association of FtsZ with other proteins to assemble a dynamic ring during septation, forming part of the functionally active division machinery, the divisome. FtsZ reversibly interacts with FtsA and ZipA at the cytoplasmic membrane to form a proto-ring, the first molecular assembly of the divisome, which is ultimately joined by the rest of the division-specific proteins. In this review we summarize the quantitative approaches used to study the activity, interactions, and assembly properties of FtsZ under well-defined solution conditions, with the aim of furthering our understanding of how the behavior of FtsZ is controlled by nucleotides and physiological ligands. The modulation of the association and assembly properties of FtsZ by excluded-volume effects, reproducing in part the natural crowded environment in which this protein has evolved to function, will be described. The subsequent studies on the reactivity of FtsZ in membrane-like systems using biochemical, biophysical, and imaging technologies are reported. Finally, we discuss the experimental challenges to be met to achieve construction of the minimum protein set needed to initiate bacterial division, without cells, in a cell-like compartment. This integrated approach, combining quantitative and synthetic strategies, will help to support (or dismiss) conclusions already derived from cellular and molecular analysis and to complete our understanding on how bacterial division works.
Collapse
Affiliation(s)
- Germán Rivas
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Mercedes Jiménez
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas (CIB), c/Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Silvia Zorrilla
- Instituto de Química Física "Rocasolano" (CSIC), c/Serrano 119, 28006, Madrid, Spain
| |
Collapse
|
22
|
Martos A, Jiménez M, Rivas G, Schwille P. Towards a bottom-up reconstitution of bacterial cell division. Trends Cell Biol 2012; 22:634-43. [DOI: 10.1016/j.tcb.2012.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
|
23
|
López-Montero I, López-Navajas P, Mingorance J, Vélez M, Vicente M, Monroy F. Membrane reconstitution of FtsZ-ZipA complex inside giant spherical vesicles made of E. coli lipids: large membrane dilation and analysis of membrane plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:687-98. [PMID: 23149342 DOI: 10.1016/j.bbamem.2012.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/26/2012] [Accepted: 11/05/2012] [Indexed: 01/28/2023]
Abstract
During the division process of Escherichia coli, the globular protein FtsZ is early recruited at the constriction site. The Z-ring, based on FtsZ filaments associated to the inner cell membrane, has been postulated to exert constriction forces. Membrane anchoring is mediated by ZipA, an essential transmembrane protein able to specifically bind FtsZ. In this work, an artificial complex of FtsZ-ZipA has been reconstituted at the inner side of spherical giant unilamellar vesicles made of E. coli lipids. Under these conditions, FtsZ polymerization, triggered when a caged GTP analogue is UV-irradiated, was followed by up to 40% vesicle inflation. The homogeneous membrane dilation was accompanied by the visualization of discrete FtsZ assemblies at the membrane. Complementary rheological data revealed enhanced elasticity under lateral dilation. This explains why vesicles can undergo large dilations in the regime of mechanical stability. A mechanical role for FtsZ polymers as promoters of membrane softening and plasticization is hypothesized.
Collapse
Affiliation(s)
- I López-Montero
- Departamento de Química Física I, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
24
|
Catapano ER, Arriaga LR, Espinosa G, Monroy F, Langevin D, López-Montero I. Solid character of membrane ceramides: a surface rheology study of their mixtures with sphingomyelin. Biophys J 2012; 101:2721-30. [PMID: 22261061 DOI: 10.1016/j.bpj.2011.10.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 12/19/2022] Open
Abstract
The compression and shear viscoelasticities of egg-ceramide and its mixtures with sphingomyelin were investigated using oscillatory surface rheology performed on Langmuir monolayers. We found high values for the compression and shear moduli for ceramide, compatible with a solid-state membrane, and extremely high surface viscosities when compared to typical fluid lipids. A fluidlike rheological behavior was found for sphingomyelin. Lateral mobilities, measured from particle tracking experiments, were correlated with the monolayer viscosities through the usual hydrodynamic relationships. In conclusion, ceramide increases the solid character of sphingomyelin-based membranes and decreases their fluidity, thus drastically decreasing the lateral mobilities of embedded objects. This mechanical behavior may involve important physiological consequences in biological membranes containing ceramides.
Collapse
Affiliation(s)
- Elisa R Catapano
- Mechanics of Biological Systems, Departamento de Química Física I, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
25
|
López-Montero I, Mateos-Gil P, Sferrazza M, Navajas PL, Rivas G, Vélez M, Monroy F. Active membrane viscoelasticity by the bacterial FtsZ-division protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4744-4753. [PMID: 22329688 DOI: 10.1021/la204742b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
At the early stages of the division process in Escherichia coli, the protein FtsZ forms a septal ring at the midcell. This Z-ring causes membrane constriction during bacterial division. The Z-ring associates to the lipid membrane through several membrane proteins, ZipA among them. Here, a simplified FtsZ-ZipA model was reconstituted onto Langmuir monolayers based in E. coli polar lipid extract. Brewster angle and atomic force microscopy have revealed membrane FtsZ-polymerization upon GTP hydrolysis. The compression viscoelasticity of these monolayers has been also investigated. The presence of protein induced softening and fluidization with respect to the bare lipid membrane. An active mechanism, based on the internal forces stressed by FtsZ filaments and transduced to the lipid membrane by ZipA, was suggested to underlie the observed behavior.
Collapse
Affiliation(s)
- Iván López-Montero
- Departamento de Química Física I, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Langevin D, Monroy F. Interfacial rheology of polyelectrolytes and polymer monolayers at the air–water interface. Curr Opin Colloid Interface Sci 2010. [DOI: 10.1016/j.cocis.2010.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Arriaga LR, López-Montero I, Ignés-Mullol J, Monroy F. Domain-Growth Kinetic Origin of Nonhorizontal Phase Coexistence Plateaux in Langmuir Monolayers: Compression Rigidity of a Raft-Like Lipid Distribution. J Phys Chem B 2010; 114:4509-20. [DOI: 10.1021/jp9118953] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laura R. Arriaga
- Mechanics of Biological Membranes and Biorheology, Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain, and Departamento de Química Física, Universidad de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Iván López-Montero
- Mechanics of Biological Membranes and Biorheology, Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain, and Departamento de Química Física, Universidad de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Jordi Ignés-Mullol
- Mechanics of Biological Membranes and Biorheology, Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain, and Departamento de Química Física, Universidad de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Francisco Monroy
- Mechanics of Biological Membranes and Biorheology, Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain, and Departamento de Química Física, Universidad de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|