1
|
Ozolina NV, Kapustina IS, Gurina VV, Bobkova VA, Nurminsky VN. Role of Plasmalemma Microdomains (Rafts) in Protection of the Plant Cell Under Osmotic Stress. J Membr Biol 2021; 254:429-439. [PMID: 34302495 DOI: 10.1007/s00232-021-00194-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
Lipid-protein microdomains (presumably rafts) of the plasmalemma isolated from the beetroots subjected to hyperosmotic stress and hypoosmotic stress were studied. In these microdomains, the variations in the composition of total lipids, sterols, and fatty acids were observed. These variations differed under hypo- and hyperosmotic types of stress. We presumed that such variations were bound up with different strategies, which are probably related to protecting the cell from osmotic stress. One of the protection tendencies might be related, in our opinion, to credible growth of the content of such lipids as sterols and sterol esters, which are considered as raft-forming. Under osmotic stress, these lipids can contribute to the formation of both new raft structures and new membrane contacts of plasmalemma with intracellular organelles. Another protection tendency may be bound up with the redistribution of membrane phospholipids and phosphoglycerolipids possibly to stabilize the membrane's lamellar structure, which is ensured by credible growth of the content of such lipids as phosphatidylcholines, phosphatidylinositols, and digalactosyldiacylglycerol. The participation of lipid-protein microdomains in the adaptive mechanisms of plant cells may, in our opinion, also be bound up with the redistribution of membrane sterols, which (redistribution) in a number of variants may provoke credible growth in the content of cholesterol or "anti-stress" sterols (campesterol and stigmasterol). So, according to our results, the variations in the content of the plasmalemma lipid-protein microdomains take place under osmotic stress. These variations may influence the functioning of plasmalemma and take part in the adaptive mechanisms of plant cells.
Collapse
Affiliation(s)
- N V Ozolina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences,, 132, Lermontov St, Irkutsk, Russia
| | - I S Kapustina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences,, 132, Lermontov St, Irkutsk, Russia
| | - V V Gurina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences,, 132, Lermontov St, Irkutsk, Russia.
| | - V A Bobkova
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences,, 132, Lermontov St, Irkutsk, Russia
- Irkutsk State University, 5, Sukhe-Bator St, Irkutsk, Russia
| | - V N Nurminsky
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences,, 132, Lermontov St, Irkutsk, Russia
| |
Collapse
|
2
|
Dymond MK. Lipid monolayer spontaneous curvatures: A collection of published values. Chem Phys Lipids 2021; 239:105117. [PMID: 34265278 DOI: 10.1016/j.chemphyslip.2021.105117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Lipid monolayer spontaneous curvatures (or lipid intrinsic curvatures) are one of several material properties of lipids that enable the stored curvature elastic energy in a lipid aggregate to be determined. Stored curvature elastic energy is important since it can modulate the function of membrane proteins and plays a role in the regulatory pathways of phospholipid homeostasis. Due to the large number of different lipid molecules that might theoretically exist in nature, very few lipid spontaneous curvatures have been determined. Herein the values of lipid spontaneous curvatures that exist in the literature are collected, alongside key experimental details. Where possible, trends in the data are discussed and finally, obvious gaps in the knowledge are signposted.
Collapse
Affiliation(s)
- Marcus K Dymond
- Chemistry Research and Enterprise Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, BN2 4GL, United Kingdom.
| |
Collapse
|
3
|
Vallooran JJ, Duss M, Ansorge P, Mezzenga R, Landau EM. Stereochemical Purity Can Induce a New Crystalline Mesophase in Phytantriol Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9132-9141. [PMID: 32654490 DOI: 10.1021/acs.langmuir.0c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The impact of stereochemical purity of lipids on their self-assembly behavior is critical for establishing their true phase behavior from their commercial counterparts, which often contains stereoisomeric mixtures and other impurities. Here, stereochemically pure phytantriol (PT), (3,7,11,15-tetramethylhexadecane-1,2,3-triol) was synthesized from the natural trans-phytol and its thermotropic and lyotropic phase behavior in water investigated by small-angle X-ray scattering (SAXS), polarized optical microscopy (POM), and differential scanning calorimetry (DSC). These chemically pure lipids contain two chiral centers at the hydrophilic head group region and two chiral centers at the lipophilic tail region, allowing us to address the question of whether the molecular stereochemistry is related to the macroscopic phase behavior of phytantriol. In contrast to its commercial stereoisomeric mixtures, which form an isotropic micellar phase, neat (2S,3S,7R,11R)-3,7,11,15-tetramethylhexadecane-1,2,3-triol (S,S-PT) shows a smectic lamellar phase at room temperature, whereas (2R,3R,7R,11R)-3,7,11,15-tetramethylhexadecane-1,2,3-triol (R,R-PT) forms solid crystals. The lyotropic phase behavior of R,R-PT appears to be identical to that of the previously reported commercial stereoisomeric PT mixtures. In contrast, S,S-PT exhibits a different phase behavior. A lamellar crystalline phase (Lc) is formed instead of an isotropic micellar phase at a low water content, which also coexisted with other phases at low temperature. Subtle change in the shape of the diastereomers leads to variable steric interactions and subsequently affects the packing of the lipids at the molecular level, thereby influencing its self-assembling behavior. Finally, lipidic cubic phase crystallization of the membrane protein bacteriorhodopsin yielded a larger number of microcrystals with a higher average crystal length from S,S-PT than from commercial PT, suggesting faster nucleation.
Collapse
Affiliation(s)
- Jijo J Vallooran
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Michael Duss
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Philipp Ansorge
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Ehud M Landau
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
4
|
Ramezanpour M, Schmidt ML, Bashe BYM, Pruim JR, Link ML, Cullis PR, Harper PE, Thewalt JL, Tieleman DP. Structural Properties of Inverted Hexagonal Phase: A Hybrid Computational and Experimental Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6668-6680. [PMID: 32437159 DOI: 10.1021/acs.langmuir.0c00600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inverted/reverse hexagonal (HII) phases are of special interest in several fields of research, including nanomedicine. We used molecular dynamics (MD) simulation to study HII systems composed of dioleoylphosphatidylethanolamine (DOPE) and palmitoyloleoylphosphatidylethanolamine (POPE) at several hydration levels and temperatures. The effect of the hydration level on several HII structural parameters, including deuterium order parameters, was investigated. We further used MD simulations to estimate the maximum hydrations of DOPE and POPE HII lattices at several given temperatures. Finally, the effect of acyl chain unsaturation degree on the HII structure was studied via comparing the DOPE with POPE HII systems. In addition to MD simulations, we used deuterium nuclear magnetic resonance (2H NMR) and small-angle X-ray scattering (SAXS) experiments to measure the DOPE acyl chain order parameters, lattice plane distances, and the water core radius in HII phase DOPE samples at several temperatures in the presence of excess water. Structural parameters calculated from MD simulations are in excellent agreement with the experimental data. Dehydration decreases the radius of the water core. An increase in hydration level slightly increased the deuterium order parameter of lipids acyl chains, whereas an increase in temperature decreased it. Lipid cylinders undulated along the cylinder axis as a function of hydration level. The maximum hydration levels of PE HII phases at different temperatures were successfully predicted by MD simulations based on a single experimental measurement for the lattice plane distance in the presence of excess water. An increase in temperature decreases the maximum hydration and consequently the radius of the water core and lattice plane distances. Finally, DOPE formed HII structures with a higher curvature compared to POPE, as expected. We propose a general protocol for constructing computational HII systems that correspond to the experimental systems. This protocol could be used to study HII systems composed of molecules other than the PE systems used here and to improve and validate force field parameters by using the target data in the HII phase.
Collapse
Affiliation(s)
- M Ramezanpour
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - M L Schmidt
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - B Y M Bashe
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - J R Pruim
- Department of Physics and Astronomy, Calvin University, Grand Rapids, Michigan 49546, United States
| | - M L Link
- Department of Physics and Astronomy, Calvin University, Grand Rapids, Michigan 49546, United States
| | - P R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - P E Harper
- Department of Physics and Astronomy, Calvin University, Grand Rapids, Michigan 49546, United States
| | - J L Thewalt
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - D P Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Kulkarni CV. Calculating the ‘chain splay’ of amphiphilic molecules: Towards quantifying the molecular shapes. Chem Phys Lipids 2019; 218:16-21. [DOI: 10.1016/j.chemphyslip.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
|
6
|
Szostak K, Czogalla A, Przybyło M, Langner M. New lipid formulation of octenidine dihydrochloride. J Liposome Res 2017; 28:106-111. [DOI: 10.1080/08982104.2016.1275678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kamila Szostak
- Laboratory for Biophysics of Lipid Aggregates, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland,
- Lipid Systems sp z o.o, Wroclaw, Poland, and
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Magdalena Przybyło
- Laboratory for Biophysics of Lipid Aggregates, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland,
- Lipid Systems sp z o.o, Wroclaw, Poland, and
| | - Marek Langner
- Laboratory for Biophysics of Lipid Aggregates, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland,
- Lipid Systems sp z o.o, Wroclaw, Poland, and
| |
Collapse
|
7
|
Dymond MK, Gillams RJ, Parker DJ, Burrell J, Labrador A, Nylander T, Attard GS. Lipid Spontaneous Curvatures Estimated from Temperature-Dependent Changes in Inverse Hexagonal Phase Lattice Parameters: Effects of Metal Cations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10083-10092. [PMID: 27603198 DOI: 10.1021/acs.langmuir.6b03098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently we reported a method for estimating the spontaneous curvatures of lipids from temperature-dependent changes in the lattice parameter of inverse hexagonal liquid crystal phases of binary lipid mixtures. This method makes use of 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE) as a host lipid, which preferentially forms an inverse hexagonal phase to which a guest lipid of unknown spontaneous curvature is added. The lattice parameters of these binary lipid mixtures are determined by small-angle X-ray diffraction at a range of temperatures and the spontaneous curvature of the guest lipid is determined from these data. Here we report the use of this method on a wide range of lipids under different ionic conditions. We demonstrate that our method provides spontaneous curvature values for DOPE, cholesterol, and monoolein that are within the range of values reported in the literature. Anionic lipids 1,2-dioleoyl-sn-glycerol-3-phosphatidic acid (DOPA) and 1,2-dioleoyl-sn-glycerol-3-phosphoserine (DOPS) were found to exhibit spontaneous curvatures that depend on the concentration of divalent cations present in the mixtures. We show that the range of curvatures estimated experimentally for DOPA and DOPS can be explained by a series of equilibria arising from lipid-cation exchange reactions. Our data indicate a universal relationship between the spontaneous curvature of a lipid and the extent to which it affects the lattice parameter of the hexagonal phase of DOPE when it is part of a binary mixture. This universal relationship affords a rapid way of estimating the spontaneous curvatures of lipids that are expensive, only available in small amounts, or are of limited chemical stability.
Collapse
Affiliation(s)
- Marcus K Dymond
- Division of Chemistry, School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, U.K
| | - Richard J Gillams
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Duncan J Parker
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Jamie Burrell
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Ana Labrador
- MAX IV Laboratory, Lund University , PO Box 118, SE-221 00 Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Lund University , PO Box 124, SE-221 00 Lund, Sweden
| | - George S Attard
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| |
Collapse
|
8
|
Janni DS, Reddy UC, Saroj S, Muraleedharan KM. A modular approach towards drug delivery vehicles using oxanorbornane-based non-ionic amphiphiles. J Mater Chem B 2016; 4:8025-8032. [DOI: 10.1039/c6tb02192a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of non-ionic amphiphiles with hydroxylated oxanorbornane head-group was controlled using amino acid units as spacers between hydrophilic and lipophilic domains to get spherical supramolecular aggregates suitable for drug delivery applications.
Collapse
Affiliation(s)
- D. Sirisha Janni
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai
- India
| | | | - Soumya Saroj
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai
- India
| | | |
Collapse
|
9
|
Integration of Quercetin-Iron Complexes into Phosphatidylcholine or Phosphatidylethanolamine Liposomes. Appl Biochem Biotechnol 2015; 176:1904-13. [PMID: 26047928 DOI: 10.1007/s12010-015-1686-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/25/2015] [Indexed: 12/19/2022]
Abstract
It is well known that flavonoids can chelate transition metals. Flavonoid-metal complexes exhibit a high antioxidative and therapeutic potential. However, the complexes are frequently hydrophobic ones and low soluble in water, which restricts their medical applications. Integration of these complexes into liposomes may increase their bioavailability and therapeutic effect. Here, we studied the interaction of quercetin-iron complexes with dimyristoylphosphatidylcholine (DMPC) or palmitoyl-oleoyl phosphatidylethanolamine (POPE) multilamellar liposomes. Differential scanning calorimetry (DSC) and freeze-fracture electron microscopy revealed that quercetin-iron complexes did not interact with liposomes. Quercetin however could penetrate lipid bilayers, when added to liposomes at a temperature above lipid melting. Iron cations added later penetrated into the lipid bilayers and produced complexes with quercetin in the liposomes. The quercetin-iron entry in POPE liposomes was improved when the suspension was heated above the temperature of the bilayer-hexagonal HII phase transition of the lipid. The approach proposed facilitates the integration of quercetin-iron complexes into liposomes and may promote their use in medicine.
Collapse
|
10
|
Chen YF, Tsang KY, Chang WF, Fan ZA. Differential dependencies on [Ca2+] and temperature of the monolayer spontaneous curvatures of DOPE, DOPA and cardiolipin: effects of modulating the strength of the inter-headgroup repulsion. SOFT MATTER 2015; 11:4041-4053. [PMID: 25907686 DOI: 10.1039/c5sm00577a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biomembranes assume nonlamellar structures in many cellular events, with the tendency of forming a nonlamellar structure quantified by the monolayer spontaneous curvature, C(0), and with many of these events involving the acts of Ca(2+). Despite this biologically important intimacy, how C(0) is affected by [Ca(2+)] is unknown. In this study, we use the X-ray diffraction technique and the reconstruction of electron density profiles to measure the C(0)s of a zwitterionic phospholipid, DOPE, and two anionic phospholipids, DOPA and 18 : 1 (9Z) cardiolipin, at temperatures from 20 °C to 40 °C and [Ca(2+)]s from 0 mM to 100 mM; these phospholipids are chosen to examine the contributions of the electric charge density per molecule. While showing a strong dependence on temperature, C(0,DOPE) is nearly independent of [Ca(2+)]. In contrast, C(0,DOPA) and C(0),cardiolipin are almost unresponsive to the temperature change but affected by the [Ca(2+)] variation; and C(0,DOPA) varies with [Ca(2+)] ∼1.5 times more strongly than C(0,cardiolipin), with the phase preferences of DOPA and cardiolipin shifting to the H(II) phase and remaining on the Lα phase, respectively, at [Ca(2+)] = 100 mM. From these observations, we reveal the effects of modulating the strength of the inter-headgroup repulsion and discuss the mechanisms underlying the phase behaviour and cellular functions of the investigated phospholipids. Most importantly, this study recognizes that the headgroup charge density is dominant in dictating the phase behaviour of the anionic phospholipids, and that the unique molecular characteristics of cardiolipin are critically needed both for maintaining the structural integrity of cardiolipin-rich biomembranes and for fulfilling the biological roles of the phospholipid.
Collapse
Affiliation(s)
- Y-F Chen
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| | | | | | | |
Collapse
|
11
|
Sodt AJ, Pastor RW. Molecular modeling of lipid membrane curvature induction by a peptide: more than simply shape. Biophys J 2014; 106:1958-69. [PMID: 24806928 DOI: 10.1016/j.bpj.2014.02.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 11/15/2022] Open
Abstract
Molecular dynamics simulations of an amphipathic helix embedded in a lipid bilayer indicate that it will induce substantial positive curvature (e.g., a tube of diameter 20 nm at 16% surface coverage). The induction is twice that of a continuum model prediction that only considers the shape of the inclusion. The discrepancy is explained in terms of the additional presence of specific interactions described only by the molecular model. The conclusion that molecular shape alone is insufficient to quantitatively model curvature is supported by contrasting molecular and continuum models of lipids with large and small headgroups (choline and ethanolamine, respectively), and of the removal of a lipid tail (modeling a lyso-lipid). For the molecular model, curvature propensity is analyzed by computing the derivative of the free energy with respect to bending. The continuum model predicts that the inclusion will soften the bilayer near the headgroup region, an effect that may weaken curvature induction. The all-atom predictions are consistent with experimental observations of the degree of tubulation by amphipathic helices and variation of the free energy of binding to liposomes.
Collapse
Affiliation(s)
- Alexander J Sodt
- National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland.
| | - Richard W Pastor
- National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
12
|
Kolev VL, Ivanova AN, Madjarova GK, Aserin A, Garti N. Unit cell structure of water-filled monoolein into inverted hexagonal (H(II)) mesophase modeled by molecular dynamics. J Phys Chem B 2014; 118:5459-70. [PMID: 24787641 DOI: 10.1021/jp411138r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The study investigates the unit cell structure of inverted hexagonal (H(II)) mesophase composed of monoolein (1-monoolein, GMO) and water using atomistic molecular dynamics methods without imposing any restraints on lipid and water molecules. Statistically meaningful and very contrast images of the radial mass density distribution, scrutinizing also the separate components water, monoolein, the polar headgroups of the lipids, the double bond, and the termini of the hydrocarbon chain (the tail), are obtained. The lipid/water interface structure is analyzed based on the obtained water density distribution, on the estimated number of hydrogen bonds per monoolein headgroup, and on the headgroup-water radial distribution functions. The headgroup mass density distribution demonstrates hexagonal shape of the monoolein/water interface that is well-defined at higher water/monoolein ratios. Water interacts with the headgroups by forming a three-layer diffusive mass density distribution, and each layer's shape is close to hexagonal, which is an indication of long-range structural interactions. It is found that the monoolein headgroups form a constant number of hydrogen bonds leaving an excessive amount of water molecules outside the first lipid coordination sphere. Furthermore, the quantity of water at the monoolein/water interface increases steadily upon extension of the unit cell, so the interface should have a very dynamic structure. Investigation of the hydrocarbon residues reveals high compression and well-expressed structuring of the tails. The tails form a very compressed and constrained structure of defined layers across the unit cell with properties corresponding to a more densely packed nonpolar liquid (oil). Due to the hexagonal shape the 2D packing frustration is constant and does not depend on the water content. All reported structural features are based on averaging of the atomic coordinates over the time-length of the simulation trajectories. That kind of processing allows the observation of the water/GMO interface shape and its stability and mobility at a time scale close to the ones of the intermolecular interactions.
Collapse
Affiliation(s)
- Vesselin L Kolev
- The Wolfson Department of Chemical Engineering, Technion, Technion City , Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
13
|
Koller D, Lohner K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2250-9. [PMID: 24853655 DOI: 10.1016/j.bbamem.2014.05.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/28/2023]
Abstract
Research on antimicrobial peptides is in part driven by urgent medical needs such as the steady increase in pathogens being resistant to antibiotics. Despite the wealth of information compelling structure-function relationships are still scarce and thus the interfacial activity model has been proposed to bridge this gap. This model also applies to other interfacially active (membrane active) peptides such as cytolytic, cell penetrating or antitumor peptides. One parameter that is strongly linked to interfacial activity is the spontaneous lipid curvature, which is experimentally directly accessible. We discuss different parameters such as H-bonding, electrostatic repulsion, changes in monolayer surface area and lateral pressure that affect induction of membrane curvature, but also vice versa how membrane curvature triggers peptide response. In addition, the impact of membrane lipid composition on the formation of curved membrane structures and its relevance for diverse mode of action of interfacially active peptides and in turn biological activity are described. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Daniel Koller
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| |
Collapse
|
14
|
Nguan H, Ahmadi S, Hashim R. Molecular dynamics simulations of the lyotropic reverse hexagonal (HII) of Guerbet branched-chain β-d-glucoside. Phys Chem Chem Phys 2014; 16:324-34. [DOI: 10.1039/c3cp52385c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zahid NI, Conn CE, Brooks NJ, Ahmad N, Seddon JM, Hashim R. Investigation of the effect of sugar stereochemistry on biologically relevant lyotropic phases from branched-chain synthetic glycolipids by small-angle X-ray scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15794-15804. [PMID: 24274824 DOI: 10.1021/la4040134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Synthetic branched-chain glycolipids are suitable as model systems in understanding biological cell membranes, particularly because certain natural lipids possess chain branching. Herein, four branched-chain glycopyranosides, namely, 2-hexyl-decyl-α-D-glucopyranoside (α-Glc-OC10C6), 2-hexyl-decyl-β-D-glucopyranoside (β-Glc-OC10C6), 2-hexyl-decyl-α-D-galactopyranoside (α-Gal-OC10C6), and 2-hexyl-decyl-β-D-galactopyranoside (β-Gal-OC10C6), with a total alkyl chain length of 16 carbon atoms have been synthesized, and their phase behavior has been studied. The partial binary phase diagrams of these nonionic surfactants in water were investigated by optical polarizing microscopy (OPM) and small-angle X-ray scattering (SAXS). The introduction of chain branching in the hydrocarbon chain region is shown to result in the formation of inverse structures such as inverse hexagonal and inverse bicontinuous cubic phases. A comparison of the four compounds showed that they exhibited different polymorphism, especially in the thermotropic state, as a result of contributions from anomeric and epimeric effects according to their stereochemistry. The neat α-Glc-OC10C6 compound exhibited a lamellar (Lα) phase whereas dry α-Gal-OC10C6 formed an inverse bicontinuous cubic Ia3d (QII(G)) phase. Both β-anomers of glucoside and galactoside adopted the inverse hexagonal phase (HII) in the dry state. Generally, in the presence of water, all four glycolipids formed inverse bicontinuous cubic Ia3d (QII(G)) and Pn3m (QII(D)) phases over wide temperature and concentration ranges. The formation of inverse nonlamellar phases by these Guerbet branched-chain glycosides confirms their potential as materials for novel biotechnological applications such as drug delivery and crystallization of membrane proteins.
Collapse
Affiliation(s)
- N Idayu Zahid
- Department of Chemistry, Faculty of Science, University of Malaya , 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
16
|
Sodt AJ, Pastor RW. Bending free energy from simulation: correspondence of planar and inverse hexagonal lipid phases. Biophys J 2013; 104:2202-11. [PMID: 23708360 DOI: 10.1016/j.bpj.2013.03.048] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 03/12/2013] [Accepted: 03/26/2013] [Indexed: 11/16/2022] Open
Abstract
Simulations of two distinct systems, one a planar bilayer, the other the inverse hexagonal phase, indicate consistent mechanical properties and curvature preferences, with single DOPE leaflets having a spontaneous curvature, R0 = -26 Å (experimentally ~ -29.2 Å) and DOPC leaflets preferring to be approximately flat (R0= -65 Å, experimentally ~ -87.3 Å). Additionally, a well-defined pivotal plane, where a DOPE leaflet bends at constant area, has been determined to be near the glycerol region of the lipid, consistent with the experimentally predicted plane. By examining the curvature frustration of both high and low curvature, the transferability of experimentally determined bending constants is supported. The techniques herein can be applied to predict the effect of biologically active molecules on the mechanical properties of lipid bilayers under well-controlled conditions.
Collapse
Affiliation(s)
- Alexander J Sodt
- National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | | |
Collapse
|
17
|
Kolev V, Ivanova A, Madjarova G, Aserin A, Garti N. Molecular dynamics approach to water structure of HII mesophase of monoolein. J Chem Phys 2012; 136:074509. [DOI: 10.1063/1.3685509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|