1
|
Nikitina AA, Van Grouw A, Roysam T, Huang D, Fernández FM, Kemp ML. Mass Spectrometry Imaging Reveals Early Metabolic Priming of Cell Lineage in Differentiating Human-Induced Pluripotent Stem Cells. Anal Chem 2023; 95:4880-4888. [PMID: 36898041 PMCID: PMC10034746 DOI: 10.1021/acs.analchem.2c04416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise in regenerative medicine; however, few algorithms of quality control at the earliest stages of differentiation have been established. Despite lipids having known functions in cell signaling, their role in pluripotency maintenance and lineage specification is underexplored. We investigated the changes in iPSC lipid profiles during the initial loss of pluripotency over the course of spontaneous differentiation using the co-registration of confocal microscopy and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging. We identified phosphatidylethanolamine (PE) and phosphatidylinositol (PI) species that are highly informative of the temporal stage of differentiation and can reveal iPS cell lineage bifurcation occurring metabolically. Several PI species emerged from the machine learning analysis of MS data as the early metabolic markers of pluripotency loss, preceding changes in the pluripotency transcription factor Oct4. The manipulation of phospholipids via PI 3-kinase inhibition during differentiation manifested in the spatial reorganization of the iPS cell colony and elevated expression of NCAM-1. In addition, the continuous inhibition of phosphatidylethanolamine N-methyltransferase during differentiation resulted in the enhanced maintenance of pluripotency. Our machine learning analysis highlights the predictive power of lipidomic metrics for evaluating the early lineage specification in the initial stages of spontaneous iPSC differentiation.
Collapse
Affiliation(s)
- Arina A Nikitina
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alexandria Van Grouw
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tanya Roysam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Danning Huang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Liu L, Zhu X, Ye H, Wen Y, Sen B, Wang G. Low dissolved oxygen supply functions as a global regulator of the growth and metabolism of Aurantiochytrium sp. PKU#Mn16 in the early stages of docosahexaenoic acid fermentation. Microb Cell Fact 2023; 22:52. [PMID: 36918882 PMCID: PMC10015696 DOI: 10.1186/s12934-023-02054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/04/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Thraustochytrids accumulate lipids with a high content of docosahexaenoic acid (DHA). Although their growth and DHA content are significantly affected by the dissolved oxygen (DO) supply, the role of DO on the transcriptional regulation of metabolism and accumulation of intracellular metabolites remains poorly understood. Here we investigate the effects of three different DO supply conditions (10%, 30%, and 50%) on the fed-batch culture of the Aurantiochytrium PKU#Mn16 strain to mainly reveal the differential gene expressions and metabolite profiles. RESULTS While the supply of 10% DO significantly reduced the rates of biomass and DHA production in the early stages of fermentation, it achieved the highest amounts of biomass (56.7 g/L) and DHA (6.0 g/L) on prolonged fermentation. The transcriptome analyses of the early stage (24 h) of fermentation revealed several genes involved in the central carbon, amino acid, and fatty acid metabolism, which were significantly downregulated at a 10% DO level. The comparative metabolomics results revealed the accumulation of several long-chain fatty acids, amino acids, and other metabolites, supporting the transcriptional regulation under the influence of a low oxygen supply condition. In addition, certain genes involved in antioxidative systems were downregulated under 10% DO level, suggesting a lesser generation of reactive oxygen species that lead to oxidative damage and fatty acid oxidation. CONCLUSIONS The findings of this study suggest that despite the slow growth and metabolism in the early stage of fermentation of Aurantiochytrium sp. PKU#Mn16, a constant supply of low dissolved oxygen can yield biomass and DHA content better than that with high oxygen supply conditions. The critical information gained in this study will help to further improve DHA production through bioprocess engineering strategies.
Collapse
Affiliation(s)
- Lu Liu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xingyu Zhu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Huike Ye
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingying Wen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Grechana O, Shevchenko I, Rudnik A, Saliy O, Fukleva L, Serbin A. Raw material “Trifolii pratense herba” originated from southern Ukraine: diagnostic microscopic features and its antioxidant activity. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As a result of pharmacognostic and pharmacological studies, diagnostic signs of Trifolii pratense grass collected in the phenophase of active flowering in the area of southern Ukraine were revealed. We have proposed the adoption of an appendix to the existing monograph of the State Service of Ukraine on Medicines and Drugs Control “Trifolii inflorescences”, with raw material of grass Trifolii pratense, with appropriate microscopic identification of diagnostic signs of leaves and stems of the plant. According to our previously found optimal conditions for extraction of medicinal plant raw materials (ratio of solvent-plant material, time and temperature of extraction), selected aqueous extract (1: 5) of clover grass with yields of maximum active substances to the extract from 60 min to 24 hours, which showed lower values of TBARS (0.541 ± 0.0291 μM / g, mean ± SD), which gives grounds to recommend the use of raw materials as an antioxidant, compared with the action of ascorbic acid.
Collapse
|
4
|
Sun Y, Xia X, Basnet D, Zheng JC, Huang J, Liu J. Mechanisms of Ferroptosis and Emerging Links to the Pathology of Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:904152. [PMID: 35837484 PMCID: PMC9273851 DOI: 10.3389/fnagi.2022.904152] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are a diverse class of diseases attributed to chronic progressive neuronal degeneration and synaptic loss in the brain and/or spinal cord, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and multiple sclerosis. The pathogenesis of neurodegenerative diseases is complex and diverse, often involving mitochondrial dysfunction, neuroinflammation, and epigenetic changes. However, the pathogenesis of neurodegenerative diseases has not been fully elucidated. Recently, accumulating evidence revealed that ferroptosis, a newly discovered iron-dependent and lipid peroxidation-driven type of programmed cell death, provides another explanation for the occurrence and progression of neurodegenerative diseases. Here, we provide an overview of the process and regulation mechanisms of ferroptosis, and summarize current research progresses that support the contribution of ferroptosis to the pathogenesis of neurodegenerative diseases. A comprehensive understanding of the emerging roles of ferroptosis in neurodegenerative diseases will shed light on the development of novel therapeutic technologies and strategies for slowing down the progression of these diseases.
Collapse
Affiliation(s)
- Yiyan Sun
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Diksha Basnet
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
- *Correspondence: Jialin C. Zheng,
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Jian Huang,
| | - Jianhui Liu
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Jianhui Liu,
| |
Collapse
|
5
|
Mardones JI, Paredes J, Godoy M, Suarez R, Norambuena L, Vargas V, Fuenzalida G, Pinilla E, Artal O, Rojas X, Dorantes-Aranda JJ, Lee Chang KJ, Anderson DM, Hallegraeff GM. Disentangling the environmental processes responsible for the world's largest farmed fish-killing harmful algal bloom: Chile, 2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144383. [PMID: 33421787 DOI: 10.1016/j.scitotenv.2020.144383] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The dictyochophyte microalga Pseudochattonella verruculosa was responsible for the largest farmed fish mortality ever recorded in the world, with losses for the Chilean salmon industry amounting to US$ 800 M in austral summer 2016. Super-scale climatic anomalies resulted in strong vertical water column stratification that stimulated development of a dynamic P. verruculosa thin layer (up to 38 μg chl a L-1) for several weeks in Reloncaví Sound. Hydrodynamic modeling (MIKE 3D) indicated that the Sound had extremely low flushing rates (between 121 and 200 days) in summer 2016. Reported algal cell densities of 7000-20,000 cells mL-1 generated respiratory distress in fish that was unlikely due to low dissolved oxygen (permanently >4 mg L-1). Histological examination of salmon showed that gills were the most affected organ with significant tissue damage and circulatory disorders. It is possible that some of this damage was due to a diatom bloom that preceded the Pseudochattonella event, thereby rendering the fish more susceptible to Pseudochattonella. No correlation between magnitude of fish mortality and algal cell abundance nor fish age was evident. Algal cultures revealed rapid growth rates and high cell densities (up to 600,000 cells mL-1), as well as highly complex life cycle stages that can be easily overlooked in monitoring programs. In cell-based bioassays, Chilean P. verruculosa was only toxic to the RTgill-W1 cell line following exposures to high cell densities of lysed cells (>100,000 cells mL-1). Fatty acid profiles of a cultured strain showed elevated concentrations of potentially ichthyotoxic, long-chain polyunsaturated fatty acids (PUFAs) (69.7% ± 1.8%)- stearidonic (SDA, 18:4ω3-28.9%), and docosahexaenoic acid (DHA, 22:6ω3-22.3%), suggesting that lipid peroxidation may help to explain the mortalities, though superoxide production by Pseudochattonella was low (< 0.21 ± 0.19 pmol O2- cell-1 h-1). It therefore remains unknown what the mechanisms of salmon mortality were during the Pseudochattonella bloom. Multiple mitigation strategies were used by salmon farmers during the event, with only delayed seeding of juvenile fish into the cages and towing of cages to sanctuary sites being effective. Airlift pumping, used effectively against other fish-killing HABs in the US and Canada was not effective, perhaps because it brought subsurface layers of Pseudochattonella to the surface, or and it also may have lysed the fragile cells, rendering them more lethal. The present study highlights knowledge gaps and inefficiency of contingency plans by the fish farming industry to overcome future fish-killing algal blooms under future climate change scenarios. The use of new technologies based on molecular methods for species detection, good farm practices by fish farms, and possible mitigation strategies are discussed.
Collapse
Affiliation(s)
- Jorge I Mardones
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| | - Javier Paredes
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Chile
| | - Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt, Chile; Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Sede de la Patagonia, Puerto Montt 5480000, Chile; Doctorado en acuicultura, Programa cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Chile
| | - Rudy Suarez
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt, Chile; Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Sede de la Patagonia, Puerto Montt 5480000, Chile; Magister en acuicultura, Universidad Católica del Norte, Coquimbo, Chile
| | - Luis Norambuena
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Chile
| | - Valentina Vargas
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Chile
| | - Gonzalo Fuenzalida
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Chile
| | - Elias Pinilla
- CTPA-Putemún, Instituto de Fomento Pesquero (IFOP), Castro, Chile
| | - Osvaldo Artal
- CTPA-Putemún, Instituto de Fomento Pesquero (IFOP), Castro, Chile
| | - Ximena Rojas
- Instituto Tecnológico del Salmón (INTESAL), Juan Soler Manfredini 41, Of. 1802, Puerto Montt, Chile
| | | | - Kim J Lee Chang
- CSIRO Ocean and Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia
| | - Donald M Anderson
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA, USA
| | - Gustaaf M Hallegraeff
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Australia
| |
Collapse
|
6
|
Yang Q, Li B, Sheng M. Meibum lipid composition in type 2 diabetics with dry eye. Exp Eye Res 2021; 206:108522. [PMID: 33781754 DOI: 10.1016/j.exer.2021.108522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this investigation was to analyze and compare the composition of meibum between type 2 diabetics with dry eye disease (DED) and control subjects to better reveal the pathologic mechanisms of the meibomian gland degeneration (MGD) and DED in type 2 diabetes mellitus (T2DM). METHODS 90 subjects were divided into the following 4 groups: DM-DED group: T2DM patients with DED (n = 30); DM control group: DM patients without DED (n = 18); DED group: DED patients without DM (n = 26); naive control group: normal subjects (n = 16). The lipid composition of meibum samples collected from these subjects was analyzed by high-pressure liquid chromatography-mass spectrometry (HPLC-MS) system. The content of lipid features from 12 major lipid classes was compared among the 4 groups. RESULTS A significantly lower level of triacylglycerols (TG) and wax esters (WE) was found between DM-DED patients and normal controls (P < 0.01), whereas the level of Cholesteryl Ester (CE) in DM-DED patients increased compared with DED patients (P < 0.05). The level of (O-acyl)-omega-hydroxy fatty acids (OAHFA) in DM-DED patients was significantly lower than that in normal controls (P < 0.01). An opposite higher level of phospholipids (PLs) was observed in DM-DED patients than that in normal controls (P < 0.01). CONCLUSIONS T2DM could influence the expression of meibum lipids to further aggravate DED and MGD. Lower expression of TG,WE and OAHFA, higher expression of CE and PLs were discovered in meibum lipids of T2DM-DED.
Collapse
Affiliation(s)
- Qin Yang
- Department of Ophthalmology,Yangpu Hospital, Tongji University School of Medicine, Shanghai, 20090, China.
| | - Bing Li
- Department of Ophthalmology,Yangpu Hospital, Tongji University School of Medicine, Shanghai, 20090, China.
| | - Minjie Sheng
- Department of Ophthalmology,Yangpu Hospital, Tongji University School of Medicine, Shanghai, 20090, China.
| |
Collapse
|
7
|
Sunjic SB, Gasparovic AC, Jaganjac M, Rechberger G, Meinitzer A, Grune T, Kohlwein SD, Mihaljevic B, Zarkovic N. Sensitivity of Osteosarcoma Cells to Concentration-Dependent Bioactivities of Lipid Peroxidation Product 4-Hydroxynonenal Depend on Their Level of Differentiation. Cells 2021; 10:cells10020269. [PMID: 33572933 PMCID: PMC7912392 DOI: 10.3390/cells10020269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
4-Hydroxynonenal (HNE) is a major aldehydic product of lipid peroxidation known to exert several biological effects. Normal and malignant cells of the same origin express different sensitivity to HNE. We used human osteosarcoma cells (HOS) in different stages of differentiation in vitro, showing differences in mitosis, DNA synthesis, and alkaline phosphatase (ALP) staining. Differentiated HOS cells showed decreased proliferation (3H-thymidine incorporation), decreased viability (thiazolyl blue tetrazolium bromide-MTT), and increased apoptosis and necrosis (nuclear morphology by staining with 4′,6-diamidino-2-phenylindole-DAPI). Differentiated HOS also had less expressed c-MYC, but the same amount of c-FOS (immunocytochemistry). When exposed to HNE, differentiated HOS produced more reactive oxygen species (ROS) in comparison with undifferentiated HOS. To clarify this, we measured HNE metabolism by an HPLC method, total glutathione (GSH), oxidized GSH (ox GSH), glutathione transferase activity (GST), proteasomal activity by enzymatic methods, HNE-protein adducts by genuine ELISA and fatty acid composition by GC-MS in these cell cultures. Differentiated HOS cells had less GSH, lower HNE metabolism, increased formation of HNE-protein adducts, and lower proteasomal activity, in comparison to undifferentiated counterpart cells, while GST and oxGSH were the same. Fatty acids analyzed by GC-MS showed that there is an increase in C20:3 in differentiated HOS while the amount of C20:4 remained the same. The results showed that the cellular machinery responsible for protection against toxicity of HNE was less efficient in differentiated HOS cells. Moreover, differentiated HOS cells contained more C20:3 fatty acid, which might make them more sensitive to free radical-initiated oxidative chain reactions and more vulnerable to the effects of reactive aldehydes such as HNE. We propose that HNE might act as natural promotor of decay of malignant (osteosarcoma) cells in case of their differentiation associated with alteration of the lipid metabolism.
Collapse
Affiliation(s)
- Suzana Borovic Sunjic
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
| | - Ana Cipak Gasparovic
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
| | - Morana Jaganjac
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
| | - Gerald Rechberger
- Institute of Molecular Biosciences, Bio TechMed-Graz, University of Graz, 8010 Graz, Austria; (G.R.); (S.D.K.)
| | - Andreas Meinitzer
- University Clinic of Traumatology, University of Graz, 8010 Graz, Austria;
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Sepp D. Kohlwein
- Institute of Molecular Biosciences, Bio TechMed-Graz, University of Graz, 8010 Graz, Austria; (G.R.); (S.D.K.)
| | - Branka Mihaljevic
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
- Correspondence:
| |
Collapse
|
8
|
Bayır H, Anthonymuthu TS, Tyurina YY, Patel SJ, Amoscato AA, Lamade AM, Yang Q, Vladimirov GK, Philpott CC, Kagan VE. Achieving Life through Death: Redox Biology of Lipid Peroxidation in Ferroptosis. Cell Chem Biol 2020; 27:387-408. [PMID: 32275865 DOI: 10.1016/j.chembiol.2020.03.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Redox balance is essential for normal brain, hence dis-coordinated oxidative reactions leading to neuronal death, including programs of regulated death, are commonly viewed as an inevitable pathogenic penalty for acute neuro-injury and neurodegenerative diseases. Ferroptosis is one of these programs triggered by dyshomeostasis of three metabolic pillars: iron, thiols, and polyunsaturated phospholipids. This review focuses on: (1) lipid peroxidation (LPO) as the major instrument of cell demise, (2) iron as its catalytic mechanism, and (3) thiols as regulators of pro-ferroptotic signals, hydroperoxy lipids. Given the central role of LPO, we discuss the engagement of selective and specific enzymatic pathways versus random free radical chemical reactions in the context of the phospholipid substrates, their biosynthesis, intracellular location, and related oxygenating machinery as participants in ferroptotic cascades. These concepts are discussed in the light of emerging neuro-therapeutic approaches controlling intracellular production of pro-ferroptotic phospholipid signals and their non-cell-autonomous spreading, leading to ferroptosis-associated necroinflammation.
Collapse
Affiliation(s)
- Hülya Bayır
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Tamil S Anthonymuthu
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarju J Patel
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew M Lamade
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Qin Yang
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Georgy K Vladimirov
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Caroline C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Valerian E Kagan
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| |
Collapse
|
9
|
González de San Román E, Bidmon HJ, Malisic M, Susnea I, Küppers A, Hübbers R, Wree A, Nischwitz V, Amunts K, Huesgen PF. Molecular composition of the human primary visual cortex profiled by multimodal mass spectrometry imaging. Brain Struct Funct 2018; 223:2767-2783. [PMID: 29633039 PMCID: PMC5995978 DOI: 10.1007/s00429-018-1660-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
The primary visual cortex (area V1) is an extensively studied part of the cerebral cortex with well-characterized connectivity, cellular and molecular architecture and functions (for recent reviews see Amunts and Zilles, Neuron 88:1086-1107, 2015; Casagrande and Xu, Parallel visual pathways: a comparative perspective. The visual neurosciences, MIT Press, Cambridge, pp 494-506, 2004). In humans, V1 is defined by heavily myelinated fibers arriving from the radiatio optica that form the Gennari stripe in cortical layer IV, which is further subdivided into laminae IVa, IVb, IVcα and IVcβ. Due to this unique laminar pattern, V1 represents an excellent region to test whether multimodal mass spectrometric imaging could reveal novel biomolecular markers for a functionally relevant parcellation of the human cerebral cortex. Here we analyzed histological sections of three post-mortem brains with matrix-assisted laser desorption/ionization mass spectrometry imaging and laser ablation inductively coupled plasma mass spectrometry imaging to investigate the distribution of lipids, proteins and metals in human V1. We identified 71 peptides of 13 different proteins by in situ tandem mass spectrometry, of which 5 proteins show a differential laminar distribution pattern revealing the border between V1 and V2. High-accuracy mass measurements identified 123 lipid species, including glycerolipids, glycerophospholipids and sphingolipids, of which at least 20 showed differential distribution within V1 and V2. Specific lipids labeled not only myelinated layer IVb, but also IVa and especially IVc in a layer-specific manner, but also and clearly separated V1 from V2. Elemental imaging further showed a specific accumulation of copper in layer IV. In conclusion, multimodal mass spectrometry imaging identified novel biomolecular and elemental markers with specific laminar and inter-areal differences. We conclude that mass spectrometry imaging provides a promising new approach toward multimodal, molecule-based cortical parcellation.
Collapse
Affiliation(s)
- Estibaliz González de San Román
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Jürgen Bidmon
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Milena Malisic
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Iuliana Susnea
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Küppers
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Rene Hübbers
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, INM-1, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Volker Nischwitz
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine, INM-1, Forschungszentrum Jülich, Jülich, Germany.
| | - Pitter F Huesgen
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
10
|
Zhang S, He Y, Sen B, Chen X, Xie Y, Keasling JD, Wang G. Alleviation of reactive oxygen species enhances PUFA accumulation in Schizochytrium sp. through regulating genes involved in lipid metabolism. Metab Eng Commun 2018; 6:39-48. [PMID: 29896446 PMCID: PMC5994804 DOI: 10.1016/j.meteno.2018.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
The unicellular heterotrophic thraustochytrids are attractive candidates for commercial polyunsaturated fatty acids (PUFA) production. However, the reactive oxygen species (ROS) generated in their aerobic fermentation process often limits their PUFA titer. Yet, the specific mechanisms of ROS involvement in the crosstalk between oxidative stress and intracellular lipid synthesis remain poorly described. Metabolic engineering to improve the PUFA yield in thraustochytrids without compromising growth is an important aspect of economic feasibility. To fill this gap, we overexpressed the antioxidative gene superoxide dismutase (SOD1) by integrating it into the genome of thraustochytrid Schizochytrium sp. PKU#Mn4 using a novel genetic transformation system. This study reports the ROS alleviation, enhanced PUFA production and transcriptome changes resulting from the SOD1 overexpression. SOD1 activity in the recombinant improved by 5.2-71.6% along with 7.8-38.5% decline in ROS during the fermentation process. Interestingly, the total antioxidant capacity in the recombinant remained higher than wild-type and above zero in the entire process. Although lipid profile was similar to that of wild-type, the concentrations of major fatty acids in the recombinant were significantly (p ≤ 0.05) higher. The PUFA titer increased up to 1232 ± 41 mg/L, which was 32.9% higher (p ≤ 0.001) than the wild type. Transcriptome analysis revealed strong downregulation of genes potentially involved in β-oxidation of fatty acids in peroxisome and upregulation of genes catalyzing lipid biosynthesis. Our results enrich the knowledge on stress-induced PUFA biosynthesis and the putative role of ROS in the regulation of lipid metabolism in oleaginous thraustochytrids. This study provides a new and alternate strategy for cost-effective industrial fermentation of PUFA.
Collapse
Affiliation(s)
- Sai Zhang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaohong Chen
- State Key Laboratory of Systems Engines, Tianjin University, Tianjin 300072, China
| | - Yunxuan Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jay D. Keasling
- Berkeley Center for Synthetic Biology, University of California, Berkeley, CA 94720-3224, USA
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Systems Engines, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Bi ZQ, Ren LJ, Hu XC, Sun XM, Zhu SY, Ji XJ, Huang H. Transcriptome and gene expression analysis of docosahexaenoic acid producer Schizochytrium sp. under different oxygen supply conditions. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:249. [PMID: 30245741 PMCID: PMC6142690 DOI: 10.1186/s13068-018-1250-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/06/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Schizochytrium sp. is a promising strain for the production of docosahexaenoic acid (DHA)-rich oil and biodiesel, and has been widely used in the food additive and bioenergy industries. Oxygen is a particularly important environmental factor for cell growth and DHA synthesis. In general, higher oxygen supply favors lipid accumulation, but could lead to a reduction of the DHA percentage in total fatty acids in Schizochytrium sp. To tackle this problem, it is essential to understand the mechanisms regulating the response of Schizochytrium sp. to oxygen. In this study, we aimed to explore the acclimatization of this DHA producer to different oxygen supply conditions by examining the transcriptome changes. RESULTS Two different fermentation processes, namely normal oxygen supply condition (shift agitation speeds from 400 rpm to 300 rpm) and high oxygen supply condition (constant agitation speeds: 400 rpm), were designed to study how the fermentation characteristics of Schizochytrium sp. HX-308 were affected by different oxygen supply conditions. The results indicated that high oxygen supply condition resulted in 49% and 37.5% improvement in the maximum cell dry weight (CDW) and total lipid concentration, respectively. However, the DHA percentage in total fatty acids decreased to 35%, which was 31.4% lower than that produced by normal oxygen supply condition. Moreover, transcriptome analysis was performed to explore the effect of the oxygen supply condition on genetic expression and metabolism. The results showed that glycolysis and pentose phosphate pathway metabolism-associated genes (hexokinase, phosphofructokinase, fructose-bisphosphate aldolase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase) were substantially upregulated in response to high oxygen supply, resulting in more NADPH was available for Schizochytrium. Specially, high oxygen supply condition also led to genes (Δ6 desaturase, Δ12 desaturase, FAS, ORFA, ORFB, and ORFC) involved in fatty acid biosynthesis upregulation. In addition, a transcriptional upregulation of catalase (CAT) became apparent under high oxygen supply condition, while superoxide dismutase (SOD) and ascorbate peroxidase (APX) were found to be down-regulated. CONCLUSIONS This study is the first to investigate the differences of gene expression at different levels of oxygen availability in the DHA producer Schizochytrium. The results of transcriptome analyses indicated that high oxygen supply condition resulting in more NADPH and acetyl-CoA production for cell growth and lipid synthesis in Schizochytrium. Δ12 desaturase and ORFC showed higher expression levels at high oxygen supply condition, which might be the key regulators for enhancing fatty acid biosynthesis in the future. These results enrich the current knowledge regarding genetic expression and provide important information to enhance DHA production in Schizochytrium sp.
Collapse
Affiliation(s)
- Zhi-Qian Bi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xue-Chao Hu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xiao-Man Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Si-Yu Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
12
|
Ren LJ, Sun XM, Ji XJ, Chen SL, Guo DS, Huang H. Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. BIORESOURCE TECHNOLOGY 2017; 223:141-148. [PMID: 27788427 DOI: 10.1016/j.biortech.2016.10.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 05/09/2023]
Abstract
Oxygen-mediated cell damage is an important issue in aerobic fermentation. In order to counteract these problems, effect of ascorbic acid on cell growth and docosahexaenoic acid (DHA) production was investigated in Schizochytrium sp. Addition of 9g/L ascorbic acid resulted in 16.16% and 30.44% improvement in cell dry weight (CDW) and DHA yield, respectively. Moreover, the total antioxidant capacity (T-AOC) of cells decreased from 2.17 at 12h to 0 at 60h and did not recover, while ascorbic acid addition could extend the time of arrival zero with the reduced intracellular ROS. However, ROS levels still increased after 72h. Therefore, to further solve the problem of high ROS levels and low T-AOC of cells after 72h, a two-point addition strategy was proposed. With this strategy, DHA yield was further increased to 38.26g/L. This work innovatively investigated the feasibility of manipulating Schizochytrium sp. cultivation through ROS level and T-AOC.
Collapse
Affiliation(s)
- Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Man Sun
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Sheng-Lan Chen
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Dong-Sheng Guo
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
13
|
Sethi S, Brietzke E. Recent advances in lipidomics: Analytical and clinical perspectives. Prostaglandins Other Lipid Mediat 2017; 128-129:8-16. [DOI: 10.1016/j.prostaglandins.2016.12.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
14
|
Secci G, Parisi G, Dasilva G, Medina I. Stress during slaughter increases lipid metabolites and decreases oxidative stability of farmed rainbow trout (Oncorhynchus mykiss) during frozen storage. Food Chem 2015. [PMID: 26212934 DOI: 10.1016/j.foodchem.2015.05.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The consequences of slaughter on the formation of lipid metabolites and oxidative stability of fish muscle during long term frozen storage (-10 °C) were evaluated using farmed rainbow trout killed by asphyxia in air or percussion. The level of major adenine nucleotides and their related compounds was determined in order to check the stress level during slaughter. Plasma lipid metabolites were studied through the determination of eicosanoids and docosanoids such as prostaglandins, leukotrienes, thromboxanes, isoprostanes, resolvins, hydroxides, hydroperoxides, coming from eicosapentaenoic (EPA), arachidonic (ARA), and docosahexaenoic (DHA) acids. In addition, lipid oxidative stability of fillets was monitored. Results revealed that stress during slaughter can greatly influence oxidative stress and oxidative stability of rainbow trout fillets. In fact, asphyxia, which was the most stressful, induced a higher production of some lipid mediators such as hydroperoxides and EPA-derived prostaglandins, such as 12-HpHEPE/15-HpHEPE and PGD3/PGE3. As a consequence, fillets derived from asphyxiated fish were less stable in terms of oxidative stability and showed lower shelf-life.
Collapse
Affiliation(s)
- G Secci
- Department of Agri-Food Production and Environmental Sciences, Section of Animal Sciences, University of Firenze, via delle Cascine 5, 50144 Firenze, Italy
| | - G Parisi
- Department of Agri-Food Production and Environmental Sciences, Section of Animal Sciences, University of Firenze, via delle Cascine 5, 50144 Firenze, Italy.
| | - G Dasilva
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain
| | - I Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain
| |
Collapse
|
15
|
Evidence in support of potential applications of lipid peroxidation products in cancer treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:931251. [PMID: 24369491 PMCID: PMC3867858 DOI: 10.1155/2013/931251] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 11/02/2013] [Accepted: 11/08/2013] [Indexed: 01/10/2023]
Abstract
Cancer cells generate reactive oxygen species (ROS) resulting from mitochondrial dysfunction, stimulation of oncogenes, abnormal metabolism, and aggravated inflammatory activities. Available evidence also suggests that cancer cells depend on intrinsic ROS level for proliferation and survival. Both physiological and pathophysiological roles have been ascribed to ROS which cause lipid peroxidation. In spite of their injurious effects, the ROS and the resulting lipid peroxidation products could be beneficial in cancer treatment. This review presents research findings suggesting that ROS and the resulting lipid peroxidation products could be utilized to inhibit cancer growth or induce cancer cell death. It also underscores the potential of lipid peroxidation products to potentiate the antitumor effect of other anticancer agents. The review also highlights evidence demonstrating other potential applications of lipid peroxidation products in cancer treatment. These include the prospect of lipid peroxidation products as a diagnostic tool to predict the chances of cancer recurrence, to monitor treatment progress or how well cancer patients respond to therapy. Further and detailed research is required on how best to successfully, effectively, and selectively target cancer cells in humans using lipid peroxidation products. This may prove to be an important strategy to complement current treatment regimens for cancer patients.
Collapse
|
16
|
Borisjuk L, Rolletschek H, Neuberger T. Nuclear magnetic resonance imaging of lipid in living plants. Prog Lipid Res 2013; 52:465-87. [DOI: 10.1016/j.plipres.2013.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/15/2013] [Accepted: 05/28/2013] [Indexed: 01/13/2023]
|
17
|
Chatgilialoglu C, Ferreri C, Melchiorre M, Sansone A, Torreggiani A. Lipid geometrical isomerism: from chemistry to biology and diagnostics. Chem Rev 2013; 114:255-84. [PMID: 24050531 DOI: 10.1021/cr4002287] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Wang M, Han RH, Han X. Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Anal Chem 2013; 85:9312-20. [PMID: 23971716 DOI: 10.1021/ac402078p] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Charge-remote fragmentation has been well recognized as an effective approach for dissociation of long aliphatic chains. Herein, we exploited this approach for structural identification of all fatty acids including saturated, unsaturated, and modified ones by using electrospray ionization tandem mass spectrometry after one-step derivatization of a charge-carried reagent through an amidation reaction. We tested the approach with different charge-carried reagents with respect to the hydrophobicity, charge strength, and distance from the charge to the carboxyl group. We found that all of the derivatives with these reagents could yield informative charge-remote fragmentation patterns regardless of the different chemical and physical properties of the reagents. These informative fragmentation patterns all could be effectively used for structural elucidation of lipid species containing a carboxyl group. We further found that the distinguished charge-remote fragmentations of fatty acid isomers enabled us to determine the composition of these isomers without any chromatographic separation. Finally, the abundant fragments yielded from an individual derivatized moiety enabled us to sensitively quantify the individual species containing a carboxyl group. The described approach was a great extension to the multidimensional mass-spectrometry-based shotgun lipidomics for global analysis of fatty acids including isomers and modifications. We believe that this approach could greatly facilitate identification of the biochemical mechanisms underlying numerous pathological conditions.
Collapse
Affiliation(s)
- Miao Wang
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute , Orlando, Florida 32827, United States
| | | | | |
Collapse
|
19
|
Almario RU, Karakas SE. Lignan Content of the Flaxseed Influences Its Biological Effects in Healthy Men and Women. J Am Coll Nutr 2013; 32:194-9. [DOI: 10.1080/07315724.2013.791147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Levison BS, Zhang R, Wang Z, Fu X, DiDonato JA, Hazen SL. Quantification of fatty acid oxidation products using online high-performance liquid chromatography tandem mass spectrometry. Free Radic Biol Med 2013; 59:2-13. [PMID: 23499838 PMCID: PMC3772641 DOI: 10.1016/j.freeradbiomed.2013.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 01/22/2023]
Abstract
Oxidized fatty acids formed via lipid peroxidation are implicated in pathological processes such as inflammation and atherosclerosis. A number of methods may be used to detect specific oxidized fatty acids containing a single or multiple combinations of epoxide, hydroxyl, ketone, and hydroperoxide moieties on varying carbon chain lengths from C8 up to C30. Some of these methods are nonspecific and their use in biological systems is fraught with difficulty. Measures of specific oxidized fatty acid derivatives help in identifying oxidation pathways in pathological processes. We used liquid chromatography coupled with electrospray ionization tandem mass spectrometry as an efficient, selective, and sensitive method for identifying and analyzing multiple specific fatty acid peroxidation products in human plasma and other biological matrices. We then distilled the essential components of a number of these analyses to provide an efficient protocol by which fatty acid oxidation products and their parent compounds can be determined. In this protocol, addition of a synthetic internal standard to the sample, followed by base hydrolysis at elevated temperature and liquid-liquid phase sample extraction with lighter-than-water solvents, facilitates isolation of the oxidized fatty acid species. These species can be identified and accurately quantified using stable-isotope dilution and multiple-reaction monitoring. Use of a coupled multiplexed gradient HPLC system on the front end enables high-throughput chromatography and more efficient use of mass spectrometer time.
Collapse
Affiliation(s)
- Bruce S. Levison
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Renliang Zhang
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
- MassSpectrometry II Core, Cleveland Clinic, Cleveland, Ohio 44195
| | - Zeneng Wang
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Xiaoming Fu
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Joseph A. DiDonato
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Stanley L. Hazen
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
- MassSpectrometry II Core, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
21
|
Barski OA, Xie Z, Baba SP, Sithu SD, Agarwal A, Cai J, Bhatnagar A, Srivastava S. Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 2013; 33:1162-70. [PMID: 23559625 DOI: 10.1161/atvbaha.112.300572] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Atherosclerotic lesions are associated with the accumulation of reactive aldehydes derived from oxidized lipids. Although inhibition of aldehyde metabolism has been shown to exacerbate atherosclerosis and enhance the accumulation of aldehyde-modified proteins in atherosclerotic plaques, no therapeutic interventions have been devised to prevent aldehyde accumulation in atherosclerotic lesions. APPROACH AND RESULTS We examined the efficacy of carnosine, a naturally occurring β-alanyl-histidine dipeptide, in preventing aldehyde toxicity and atherogenesis in apolipoprotein E-null mice. In vitro, carnosine reacted rapidly with lipid peroxidation-derived unsaturated aldehydes. Gas chromatography mass-spectrometry analysis showed that carnosine inhibits the formation of free aldehydes 4-hydroxynonenal and malonaldialdehyde in Cu(2+)-oxidized low-density lipoprotein. Preloading bone marrow-derived macrophages with cell-permeable carnosine analogs reduced 4-hydroxynonenal-induced apoptosis. Oral supplementation with octyl-D-carnosine decreased atherosclerotic lesion formation in aortic valves of apolipoprotein E-null mice and attenuated the accumulation of protein-acrolein, protein-4-hydroxyhexenal, and protein-4-hydroxynonenal adducts in atherosclerotic lesions, whereas urinary excretion of aldehydes as carnosine conjugates was increased. CONCLUSIONS The results of this study suggest that carnosine inhibits atherogenesis by facilitating aldehyde removal from atherosclerotic lesions. Endogenous levels of carnosine may be important determinants of atherosclerotic lesion formation, and treatment with carnosine or related peptides could be a useful therapy for the prevention or the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Oleg A Barski
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Milic I, Hoffmann R, Fedorova M. Simultaneous Detection of Low and High Molecular Weight Carbonylated Compounds Derived from Lipid Peroxidation by Electrospray Ionization-Tandem Mass Spectrometry. Anal Chem 2012. [DOI: 10.1021/ac302356z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ivana Milic
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and ‡Center for Biotechnology
and Biomedicine, Universität Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Ralf Hoffmann
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and ‡Center for Biotechnology
and Biomedicine, Universität Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Maria Fedorova
- Institute
of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and ‡Center for Biotechnology
and Biomedicine, Universität Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| |
Collapse
|
23
|
Sparvero L, Amoscato A, Dixon C, Long J, Kochanek P, Pitt B, Bayir H, Kagan V. Mapping of phospholipids by MALDI imaging (MALDI-MSI): realities and expectations. Chem Phys Lipids 2012; 165:545-62. [PMID: 22692104 PMCID: PMC3642772 DOI: 10.1016/j.chemphyslip.2012.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has emerged as a novel powerful MS methodology that has the ability to generate both molecular and spatial information within a tissue section. Application of this technology as a new type of biochemical lipid microscopy may lead to new discoveries of the lipid metabolism and biomarkers associated with area-specific alterations or damage under stress/disease conditions such as traumatic brain injury or acute lung injury, among others. However there are limitations in the range of what it can detect as compared with liquid chromatography-MS (LC-MS) of a lipid extract from a tissue section. The goal of the current work was to critically consider remarkable new opportunities along with the limitations and approaches for further improvements of MALDI-MSI. Based on our experimental data and assessments, improvements of the spectral and spatial resolution, sensitivity and specificity towards low abundance species of lipids are proposed. This is followed by a review of the current literature, including methodologies that other laboratories have used to overcome these challenges.
Collapse
Affiliation(s)
- L.J. Sparvero
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - A.A. Amoscato
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - C.E. Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J.B. Long
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 21910, USA
| | - P.M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - B.R. Pitt
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - H. Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - V.E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Il'yasova D, Scarbrough P, Spasojevic I. Urinary biomarkers of oxidative status. Clin Chim Acta 2012; 413:1446-53. [PMID: 22683781 DOI: 10.1016/j.cca.2012.06.012] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/03/2012] [Indexed: 02/07/2023]
Abstract
Oxidative damage produced by reactive oxygen species (ROS) has been implicated in the etiology and pathology of many health conditions, including a large number of chronic diseases. Urinary biomarkers of oxidative status present a great opportunity to study redox balance in human populations. With urinary biomarkers, specimen collection is non-invasive and the organic/metal content is low, which minimizes the artifactual formation of oxidative damage to molecules in specimens. Also, urinary levels of the biomarkers present intergraded indices of redox balance over a longer period of time compared to blood levels. This review summarizes the criteria for evaluation of biomarkers applicable to epidemiological studies and evaluation of several classes of biomarkers that are formed non-enzymatically: oxidative damage to lipids, proteins, DNA, and allantoin, an oxidative product of uric acid. The review considers formation, metabolism, and exertion of each biomarker, available data on validation in animal and clinical models of oxidative stress, analytical approaches, and their intra- and inter-individual variation. The recommended biomarkers for monitoring oxidative status over time are F₂-isoprostanes and 8-oxodG. For inter-individual comparisons, F₂-isoprostanes are recommended, whereas urinary 8-oxodG levels may be confounded by differences in the DNA repair capacity. Promising urinary biomarkers include allantoin, acrolein-lysine, and dityrosine.
Collapse
Affiliation(s)
- Dora Il'yasova
- Duke Cancer Institute, Duke University Medical Center, Box 2715, Durham, NC 27710, USA.
| | | | | |
Collapse
|
25
|
Jungnickel H, Luch A. A personalized life: biomarker monitoring from cradle to grave. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:471-98. [PMID: 22945580 DOI: 10.1007/978-3-7643-8340-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Considering the holy grail of future medical treatment being personalized medicines, biomarker research will become more and more the focus for attention not only to develop new medical treatment regimes, based on changes in biomarker patterns, but also for nutritional advice to guarantee a lifelong optimized health condition. The current review gives an outline of how personalized medicine can become established for actual medical treatment using new biomarker concepts. Starting from the development of biomarker research using mainly immunological techniques, the review gives an overview about biomarkers of prediction evolved and focuses on new methodology for the identification of biomarkers using hyphenated analytical techniques like metabolomics and lipidomics. The actual use of multivariate statistical methods in combination with metabolomics and lipidomics is discussed not only for medical treatment but also for precautionary risk identification in human biomonitoring studies.
Collapse
Affiliation(s)
- Harald Jungnickel
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Gemany,
| | | |
Collapse
|