1
|
Raza S, Poria R, Kala D, Sharma N, Sharma AK, Florien N, Tuli HS, Kaushal A, Gupta S. Innovations in dengue virus detection: An overview of conventional and electrochemical biosensor approaches. Biotechnol Appl Biochem 2024; 71:481-500. [PMID: 38225854 DOI: 10.1002/bab.2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Globally, people are in great threat due to the highly spreading of viral infectious diseases. Every year like 100-300 million cases of infections are found, and among them, above 80% are not recognized and irrelevant. Dengue virus (DENV) is an arbovirus infection that currently infects people most frequently. DENV encompasses four viral serotypes, and they each express comparable sign. From a mild febrile sickness to a potentially fatal dengue hemorrhagic fever, dengue can induce a variety of symptoms. Presently, the globe is being challenged by the untimely identification of dengue infection. Therefore, this review summarizes advances in the detection of dengue from conventional methods (nucleic acid-based, polymerase chain reaction-based, and serological approaches) to novel biosensors. This work illustrates an extensive study of the current designs and fabrication approaches involved in the formation of electrochemical biosensors for untimely identifications of dengue. Additionally, in electrochemical sensing of DENV, we skimmed through significances of biorecognition molecules like lectins, nucleic acid, and antibodies. The introduction of emerging techniques such as the CRISPR/Cas' system and their integration with biosensing platforms has also been summarized. Furthermore, the review revealed the importance of electrochemical approach compared with traditional diagnostic methods.
Collapse
Affiliation(s)
- Shadan Raza
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Deepak Kala
- Centera Laboratories, Institute of High Pressure Physics PAS, Warsaw, Poland
| | - Nishant Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University of Punjab, Mohali, Punjab, India
| | - Nkurunziza Florien
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Hardeep S Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| |
Collapse
|
2
|
da Silva DL, Cabrera MP, Cavalcanti IT, Coelho GR, Neto EB, Padilha RJR, da Silva CES, Correia MTDS, Pimenta DC, Junior LBDC. Magnetite-levan nanoparticles for lectin purification: a single-step strategy for protein isolation from the seeds extract of the plant Cratylia mollis. J Chromatogr A 2022; 1677:463292. [DOI: 10.1016/j.chroma.2022.463292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
|
3
|
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
4
|
Abrantes-Coutinho VE, Santos AO, Moura RB, Pereira-Junior FN, Mascaro LH, Morais S, Oliveira TMBF. Systematic review on lectin-based electrochemical biosensors for clinically relevant carbohydrates and glycoconjugates. Colloids Surf B Biointerfaces 2021; 208:112148. [PMID: 34624598 DOI: 10.1016/j.colsurfb.2021.112148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Carbohydrates and glycoconjugates are involved in numerous natural and pathological metabolic processes, and the precise elucidation of their biochemical functions has been supported by smart technologies assembled with lectins, i.e., ubiquitous proteins of nonimmune origin with carbohydrate-specific domains. When lectins are anchored on suitable electrochemical transducers, sensitive and innovative bioanalytical tools (lectin-based biosensors) are produced, with the ability to screen target sugars at molecular levels. In addition to the remarkable electroanalytical sensitivity, these devices associate specificity, precision, stability, besides the possibility of miniaturization and portability, which are special features required for real-time and point-of-care measurements. The mentioned attributes can be improved by combining lectins with biocompatible 0-3D semiconductors derived from carbon, metal nanoparticles, polymers and their nanocomposites, or employing labeled biomolecules. This systematic review aims to substantiate and update information on the progress made with lectin-based biosensors designed for electroanalysis of clinically relevant carbohydrates and glycoconjugates (glycoproteins, pathogens and cancer biomarkers), highlighting their main detection principles and performance in highly complex biological milieus. Moreover, particular emphasis is given to the main advantages and limitations of the reported devices, as well as the new trends for the current demands. We believe that this review will support and encourage more cutting-edge research involving lectin-based electrochemical biosensors.
Collapse
Affiliation(s)
| | - André O Santos
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil
| | - Rafael B Moura
- Centro de Ciências Agrágrias e da Biodiversidade, Universidade Federal do Cariri, 63130-025 Crato, CE, Brazil
| | - Francisco N Pereira-Junior
- Centro de Ciências Agrágrias e da Biodiversidade, Universidade Federal do Cariri, 63130-025 Crato, CE, Brazil
| | - Lucia H Mascaro
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luis, 13565-905 São Carlos, SP, Brazil
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Thiago M B F Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil.
| |
Collapse
|
5
|
The Elucidation of the Molecular Mechanism of the Extrusion Process. MATERIALS 2021; 14:ma14154278. [PMID: 34361472 PMCID: PMC8348501 DOI: 10.3390/ma14154278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 02/02/2023]
Abstract
Extrusion is a popular method for producing homogenous population of unilamellar liposomes. The technique relies on forcing a lipid suspension through cylindrical pores in a polycarbonate membrane. The quantification of the extrusion and/or recalibration processes make possible the acquisition of experimental data, which can be correlated with the mechanical properties of the lipid bilayer. In this work, the force needed for the extrusion process was correlated with the mechanical properties of a lipid bilayer derived from other experiments. Measurements were performed using a home-made dedicated device capable of maintaining a stable volumetric flux of a liposome suspension through well-defined pores and to continuously measure the extrusion force. Based on the obtained results, the correlation between the lipid bilayer bending rigidity and extrusion force was derived. Specifically, it was found that the bending rigidity of liposomes formed from well-defined lipid mixtures agrees with data obtained by others using flicker-noise spectroscopy or micromanipulation. The other issue addressed in the presented studies was the identification of molecular mechanisms leading to the formation of unilamellar vesicles in the extrusion process. Finally, it was demonstrated that during the extrusion, lipids are not exchanged between vesicles, i.e., vesicles can divide but no membrane fusion or lipid exchange between bilayers was detected.
Collapse
|
6
|
Cordeiro TAR, de Resende MAC, Moraes SCDS, Franco DL, Pereira AC, Ferreira LF. Electrochemical biosensors for neglected tropical diseases: A review. Talanta 2021; 234:122617. [PMID: 34364426 DOI: 10.1016/j.talanta.2021.122617] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/26/2022]
Abstract
A group of infectious and parasitic diseases with prevalence in tropical and subtropical regions of the planet, especially in places with difficult access, internal conflicts, poverty, and low visibility from the government and health agencies are classified as neglected tropical diseases. While some well-intentioned isolated groups are making the difference on a global scale, the number of new cases and deaths is still alarming. The development and employment of low-cost, miniaturized, and easy-to-use devices as biosensors could be the key to fast diagnosis in such areas leading to a better treatment to further eradication of such diseases. Therefore, this review contains useful information regarding the development of such devices in the past ten years (2010-2020). Guided by the updated list from the World Health Organization, the work evaluated the new trends in the biosensor field applied to the early detection of neglected tropical diseases, the efficiencies of the devices compared to the traditional techniques, and the applicability on-site for local distribution. So, we focus on Malaria, Chagas, Leishmaniasis, Dengue, Zika, Chikungunya, Schistosomiasis, Leprosy, Human African trypanosomiasis (sleeping sickness), Lymphatic filariasis, and Rabies. Few papers were found concerning such diseases and there is no available commercial device in the market. The works contain information regarding the development of point-of-care devices, but there are only at proof of concepts stage so far. Details of electrode modification and construction of electrochemical biosensors were summarized in Tables. The demand for the eradication of neglected tropical diseases is increasing. The use of biosensors is pivotal for the cause, but appliable devices are scarce. The information present in this review can be useful for further development of biosensors in the hope of helping the world combat these deadly diseases.
Collapse
Affiliation(s)
- Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | - Simone Cristina Dos Santos Moraes
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil.
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João Del-Rei, São João Del-Rei, Brazil.
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil.
| |
Collapse
|
7
|
Nascimento da Silva LC, Mendonça JSP, de Oliveira WF, Batista KLR, Zagmignan A, Viana IFT, Dos Santos Correia MT. Exploring lectin-glycan interactions to combat COVID-19: Lessons acquired from other enveloped viruses. Glycobiology 2021; 31:358-371. [PMID: 33094324 PMCID: PMC7665446 DOI: 10.1093/glycob/cwaa099] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/30/2020] [Accepted: 09/26/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of a new human coronavirus (SARS-CoV-2) has imposed great pressure on the health system worldwide. The presence of glycoproteins on the viral envelope opens a wide range of possibilities for application of lectins to address some urgent problems involved in this pandemic. In this work, we discuss the potential contributions of lectins from non-mammalian sources in the development of several fields associated with viral infections, most notably COVID-19. We review the literature on the use of non-mammalian lectins as a therapeutic approach against members of the Coronaviridae family, including recent advances in strategies of protein engineering to improve their efficacy. The applications of lectins as adjuvants for antiviral vaccines are also discussed. Finally, we present some emerging strategies employing lectins for the development of biosensors, microarrays, immunoassays and tools for purification of viruses from whole blood. Altogether, the data compiled in this review highlights the importance of structural studies aiming to improve our knowledge about the basis of glycan recognition by lectins and its repercussions in several fields, providing potential solutions for complex aspects that are emerging from different health challenges.
Collapse
Affiliation(s)
- Luís Cláudio Nascimento da Silva
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil.,Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Juliana Silva Pereira Mendonça
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50.670-901, Brazil
| | - Karla Lílian Rodrigues Batista
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Adrielle Zagmignan
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | |
Collapse
|
8
|
Duarte JL, Filippo LDD, Araujo VHS, Oliveira AEMDFM, de Araújo JTC, Silva FBDR, Pinto MC, Chorilli M. Nanotechnology as a tool for detection and treatment of arbovirus infections. Acta Trop 2021; 216:105848. [PMID: 33524384 DOI: 10.1016/j.actatropica.2021.105848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022]
Abstract
Arboviruses are medically important viruses that cause high rates of infection all over the world. In addition, the severity of the symptoms and the inadequate diagnostic methods represent a challenge far beyond eradicating the vector. The lack of specific treatments for arbovirus infections reflects the imminent need for new research for safe and efficient medicines to treat these infections. Nanotechnology is an innovative approach currently used as a platform for developing new treatments, thus improving the biopharmaceutical properties of drugs. It can also be applied to the development of diagnostic devices, improving their detection capacity. The purpose of this paper is to review recent research on the use of nanotechnology for developing new treatments and detection devices for arbovirus infections. Interestingly, it was found that only a few studies report on the use of nanotechnology to treat arbovirus infections and that most of these reports focus on the fabrication of diagnostic tools. Also, some papers report on the use of nanotechnology for the development of vaccines, which in association with mosquito eradication programs could effectively reduce the high rates of infections by these viruses.
Collapse
Affiliation(s)
- Jonatas Lobato Duarte
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil
| | - Victor Hugo Sousa Araujo
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil
| | - Anna Eliza Maciel de Faria Mota Oliveira
- Federal University of Amapá - UNIFAP, Department of Health and biological sciences, Rodovia Juscelino Kubitschek, Km 02, Jardim Marco Zero, Macapá-AP, 68903-361, Brazil
| | - Jennifer Thayanne Cavalcante de Araújo
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil
| | - Flávia Benini da Rocha Silva
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil
| | - Mara Cristina Pinto
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01 - s/n - Campos Ville - Araraquara/SP -, 14800-903, Brazil.
| |
Collapse
|
9
|
Singhal C, Shukla SK, Jain A, Pundir C, Khanuja M, Narang J, Shetti NP. Electrochemical Multiplexed Paper Nanosensor for Specific Dengue Serotype Detection Predicting Pervasiveness of DHF/DSS. ACS Biomater Sci Eng 2020; 6:5886-5894. [DOI: 10.1021/acsbiomaterials.0c00976] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chaitali Singhal
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh 201313, India
- Translational Health Sciences and Technology Institute, Faridabad, Haryana 121001, India
| | - Sudheesh K. Shukla
- School of Environmental Science and Engineering, Shandong University, Jimo, Qingdao 266237, P. R. China
| | - Akshay Jain
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh 201313, India
- Translational Health Sciences and Technology Institute, Faridabad, Haryana 121001, India
| | - Chandrashekhar Pundir
- Department of Biochemistry, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Manika Khanuja
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard (Deemed to Be University), Hamdard Nagar, New Delhi 110062, India
| | - Nagaraj P. Shetti
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Opposite to Airport, Hubballi, Karnataka 580027, India
| |
Collapse
|
10
|
Tsaneva M, Van Damme EJM. 130 years of Plant Lectin Research. Glycoconj J 2020; 37:533-551. [PMID: 32860551 PMCID: PMC7455784 DOI: 10.1007/s10719-020-09942-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Lectins are proteins with diverse molecular structures that share the ability to recognize and bind specifically and reversibly to carbohydrate structures without changing the carbohydrate moiety. The history of lectins started with the discovery of ricin about 130 years ago but since then our understanding of lectins has dramatically changed. Over the years the research focus was shifted from 'the characterization of carbohydrate-binding proteins' to 'understanding the biological function of lectins'. Nowadays plant lectins attract a lot of attention especially because of their potential for crop improvement and biomedical research, as well as their application as tools in glycobiology. The present review aims to give an overview of plant lectins and their applications, and how the field evolved in the last decades.
Collapse
Affiliation(s)
- Mariya Tsaneva
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
11
|
Yazdi MK, Ghazizadeh E, Neshastehriz A. Different liposome patterns to detection of acute leukemia based on electrochemical cell sensor. Anal Chim Acta 2020; 1109:122-129. [PMID: 32252895 DOI: 10.1016/j.aca.2020.02.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/16/2020] [Accepted: 02/27/2020] [Indexed: 11/15/2022]
Abstract
Leukemia is the worst type of malignancy in children which its proper diagnosis can be used in the treatment. We design the turn-off sensor by using the different electrochemical patterns of liposomes to the detection of acute lymphoblastic leukemia cells. Our design is first sandwiched by lectin liposome which increases the electrochemical exchange on the electrode. With the addition of Molt-4 cells, the bonding connection between the n-glycan and lectin can also increase the electrochemical exchange with the high detection cells. Subsequently, the addition of boronic acid liposomes decreases the resistance due to covering glycosylation bond and the sensor is turn-off. But stable and specific binding with the sialic acid causes the higher detection of Molt-4 cells. The electrochemical measurements are performed between the potentials at -0.4 V and +0.4 V with 1 mM [Fe(CN)6] -3/-4. So, for the first time, we designed a cells sensor based on the different patterns of liposomes to screening the N-glycan cells, which can be used in the point of care tests with higher sensitivity.
Collapse
Affiliation(s)
- Mohammad Kaji Yazdi
- Department of Pediatric Hematologist and Oncologist, Bahrami Childrenhospital, Tehran University of Medical Sciences, Tehran, Iran
| | - E Ghazizadeh
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Neshastehriz
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Radiation Sciences Department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
12
|
Omar NAS, Fen YW, Abdullah J, Mustapha Kamil Y, Daniyal WMEMM, Sadrolhosseini AR, Mahdi MA. Sensitive Detection of Dengue Virus Type 2 E-Proteins Signals Using Self-Assembled Monolayers/Reduced Graphene Oxide-PAMAM Dendrimer Thin Film-SPR Optical Sensor. Sci Rep 2020; 10:2374. [PMID: 32047209 PMCID: PMC7012912 DOI: 10.1038/s41598-020-59388-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/08/2020] [Indexed: 02/03/2023] Open
Abstract
In this work, sensitive detection of dengue virus type 2 E-proteins (DENV-2 E-proteins) was performed in the range of 0.08 pM to 0.5 pM. The successful DENV detection at very low concentration is a matter of concern for targeting the early detection after the onset of dengue symptoms. Here, we developed a SPR sensor based on self-assembled monolayer/reduced graphene oxide-polyamidoamine dendrimer (SAM/NH2rGO/PAMAM) thin film to detect DENV-2 E-proteins. Surface characterizations involving X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirms the incorporation of NH2rGO-PAMAM nanoparticles in the prepared sensor films. The specificity, sensitivity, binding affinity, and selectivity of the SPR sensor were then evaluated. Results indicated that the variation of the sensing layer due to different spin speed, time incubation, and concentration provided a better interaction between the analyte and sensing layer. The linear dependence of the SPR sensor showed good linearity (R2 = 0.92) with the lowest detection of 0.08 pM DENV-2 E-proteins. By using the Langmuir model, the equilibrium association constant was obtained at very high value of 6.6844 TM−1 (R2 = 0.99). High selectivity of the SPR sensor towards DENV-2 E-proteins was achieved in the presence of other competitors.
Collapse
Affiliation(s)
- Nur Alia Sheh Omar
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Jaafar Abdullah
- Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yasmin Mustapha Kamil
- inLAZER Dynamics Sdn Bhd, InnoHub Unit, Putra Science Park, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Amir Reza Sadrolhosseini
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Adzir Mahdi
- Wireless and Photonics Network Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Research and Application of Glycoprotein Sensors Based on Glycosyl Recognition. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61185-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Anusha JR, Kim BC, Yu KH, Raj CJ. Electrochemical biosensing of mosquito-borne viral disease, dengue: A review. Biosens Bioelectron 2019; 142:111511. [PMID: 31319325 DOI: 10.1016/j.bios.2019.111511] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/21/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Dengue virus is a mosquito-borne, single positive-stranded RNA virus that spread human being through infected female Aedes mosquito bite and causes dengue fever. The demand for early detection of this virus has increased to control the widespread of infectious diseases and protect humankind from its harmful effects. Recently, biosensors are found to the potential tool to detect and quantify the virus with fast detection, relatively cost-effective, high sensitivity and selectivity than the conventional diagnostic methods such as immunological and molecular techniques. Mostly, the biosensors employ electrochemical detection technique with transducers, owing to its easy construction, low-cost, ease of use, and portability. Here, we review the current trends and advancement in the electrochemical diagnosis of dengue virus and discussed various types of electrochemical biosensing techniques such as; amperometric, potentiometric, impedometric, and voltammetric sensing. Apart from these, we discussed the role of biorecognition molecules such as nucleic acid, antibodies, and lectins in electrochemical sensing of dengue virus. In addition, the review highlighted the benefits of the electrochemical approach in comparison with traditional diagnostic methods. We expect that these dengue virus diagnostic techniques will continue to evolve and grow in future, with exciting new possibilities stemming from advancement in the rational design of electrochemical biosensors.
Collapse
Affiliation(s)
- J R Anusha
- Department of Chemistry, Dongguk University, Jung-gu, Seoul, 04620, Republic of Korea; Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, 600034, Tamil Nadu, India
| | - Byung Chul Kim
- Department of Printed Electronics Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jellanamdo, 57922, Republic of Korea
| | - Kook-Hyun Yu
- Department of Chemistry, Dongguk University, Jung-gu, Seoul, 04620, Republic of Korea
| | - C Justin Raj
- Department of Chemistry, Dongguk University, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
15
|
Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Mahmoudi T, Chenab KK, Baradaran B, Hashemzaei M, Radinekiyan F, Mokhtarzadeh A, Maleki A. Dengue virus: a review on advances in detection and trends - from conventional methods to novel biosensors. Mikrochim Acta 2019; 186:329. [PMID: 31055654 DOI: 10.1007/s00604-019-3420-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/06/2019] [Indexed: 02/06/2023]
Abstract
Dengue virus is an important arbovirus infection which transmitted by the Aedes female mosquitoes. The attempt to control and early detection of this infection is a global public health issue at present. Because of the clinical importance of its detection, the main focus of this review is on all of the methods that can offer the new diagnosis strategies. The advantages and disadvantages of reported methods have been discussed comprehensively from different aspects like biomarkers type, sensitivity, accuracy, rate of detection, possibility of commercialization, availability, limit of detection, linear range, simplicity, mechanism of detection, and ability of usage for clinical applications. The optical, electrochemical, microfluidic, enzyme linked immunosorbent assay (ELISA), and smartphone-based biosensors are the main approaches which developed for detection of different biomarkers and serotypes of Dengue virus. Future efforts in miniaturization of these methods open the horizons for development of commercial biosensors for early-diagnosis of Dengue virus infection. Graphical abstract Transmission of Dengue virus by the biting of an Aedes aegypti mosquito, the symptoms of Dengue hemorrhagic fever and the structure of Dengue virus and application of biosensors for its detection.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
16
|
Kassenböhmer R, Heeger M, Dwivedi M, Körsgen M, Tyler BJ, Galla HJ, Arlinghaus HF. 3D Molecular ToF-SIMS Imaging of Artificial Lipid Membranes Using a Discriminant Analysis-Based Algorithm. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8750-8757. [PMID: 29969039 DOI: 10.1021/acs.langmuir.8b01253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Artificial lipid membranes play a growing role in technical applications such as biosensors in pharmacological research and as model systems in the investigation of biological lipid films. In the standard procedure for displaying the distribution of membrane components, fluorescence microscopy, the fluorophores used can influence the distribution of the components and usually not all substances can be displayed at the same time. The discriminant analysis-based algorithm used in combination with scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) enables marker-free, quantitative, simultaneous recording of all membrane components. These data are used for reconstruction of distribution patterns. In the model system used for this survey, a tear fluid lipid layer, the distribution patterns of all lipids correlate well in calculated ToF-SIMS images and epi-fluorescence microscopic images. All epi-fluorescence microscopically viewable structures are visible when using both positive and negative secondary ions and can be reproduced with high lateral resolution in the submicrometer range despite the very low signal intensity and a very low signal-to-noise ratio. In addition, three-dimensional images can be obtained with a subnanometer depth resolution. Furthermore, structures and the distribution of substances that cannot be made visible by epi-fluorescence microscopy can be displayed. This enables new insights that cannot be gained by epi-fluorescence microscopy alone.
Collapse
Affiliation(s)
- Rainer Kassenböhmer
- Physikalisches Institut , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Marcel Heeger
- Physikalisches Institut , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Mridula Dwivedi
- Institut für Biochemie , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 2 , 48149 Münster , Germany
| | - Martin Körsgen
- Physikalisches Institut , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Bonnie J Tyler
- Physikalisches Institut , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| | - Hans-Joachim Galla
- Institut für Biochemie , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 2 , 48149 Münster , Germany
| | - Heinrich F Arlinghaus
- Physikalisches Institut , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10 , 48149 Münster , Germany
| |
Collapse
|
17
|
Zulkifli SN, Rahim HA, Lau WJ. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2657-2689. [PMID: 32288249 PMCID: PMC7126548 DOI: 10.1016/j.snb.2017.09.078] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 05/12/2023]
Abstract
Water monitoring technologies are widely used for contaminants detection in wide variety of water ecology applications such as water treatment plant and water distribution system. A tremendous amount of research has been conducted over the past decades to develop robust and efficient techniques of contaminants detection with minimum operating cost and energy. Recent developments in spectroscopic techniques and biosensor approach have improved the detection sensitivities, quantitatively and qualitatively. The availability of in-situ measurements and multiple detection analyses has expanded the water monitoring applications in various advanced techniques including successful establishment in hand-held sensing devices which improves portability in real-time basis for the detection of contaminant, such as microorganisms, pesticides, heavy metal ions, inorganic and organic components. This paper intends to review the developments in water quality monitoring technologies for the detection of biological and chemical contaminants in accordance with instrumental limitations. Particularly, this review focuses on the most recently developed techniques for water contaminant detection applications. Several recommendations and prospective views on the developments in water quality assessments will also be included.
Collapse
Affiliation(s)
| | - Herlina Abdul Rahim
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Woei-Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
18
|
Benachour H, Leroy-Dudal J, Agniel R, Wilson J, Briand M, Carreiras F, Gallet O. Vitronectin (Vn) glycosylation patterned by lectin affinity assays-A potent glycoproteomic tool to discriminate plasma Vn from cancer ascites Vn. J Mol Recognit 2017; 31:e2690. [PMID: 29205553 DOI: 10.1002/jmr.2690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 11/10/2022]
Abstract
Changes in glycosylation have been associated with human cancer, but their complexity poses an analytical challenge. Ovarian cancer is a major cause of death in women because of an often late diagnosis. At least one-third of patients presents ascites fluid at diagnosis, and almost all have ascites at recurrence. Vitronectin (Vn) is a multifunctional glycoprotein that is suggested to be implicated in ovarian cancer metastasis and is found within ascites. The present study evaluated the potential of using lectin affinity for characterizing the glycosylation pattern of Vn. Human Vn was purified from 1 sample of ovarian cancer ascites or a pool of plasma samples. Consistent findings were observed with both dot blot and lectin array assays. Based on a panel of 40 lectins, the lectin array revealed discriminant patterns of lectin binding to Vn glycans. Interestingly, almost all the highlighted interactions were found to be higher with Vn from ascites relative to the plasma counterpart. Also, the lectin array was able to discriminate profiles of lectin interactions (ConA, SNA-I, PHA-E, PHA-L) between Vn samples that were not evident using dot blot, indicating its high sensitivity. The model of ConA binding during thermal unfolding of Vn confirmed the higher accessibility of mannosylated glycans in Vn from ascites as monitored by turbidimetry. Thus, this study demonstrated the usefulness of lectins and the lectin array as a glycoproteomic tool for high throughput and sensitive analysis of glycosylation patterns. Our data provide novel insights concerning Vn glycosylation patterns in clinical specimens, paving the way for further investigations regarding their functional impact and clinical interest.
Collapse
Affiliation(s)
- H Benachour
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - J Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - R Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - J Wilson
- RayBiotech, Inc., Norcross, GA, USA
| | - M Briand
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment, BioTICLA axis "Biology and Innovative Therapeutics for Ovarian Cancers"), Caen, France.,UNICANCER, Comprehensive Cancer Center François Baclesse, CRB Biological Resources Centre « OvaRessources », Caen, France
| | - F Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| | - O Gallet
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des matériaux, I-MAT (FD4122), Université de Cergy-Pontoise, Neuville Sur Oise Cedex, France
| |
Collapse
|
19
|
Rodovalho VR, Araujo GR, Vaz ER, Ueira-Vieira C, Goulart LR, Madurro JM, Brito-Madurro AG. Peptide-based electrochemical biosensor for juvenile idiopathic arthritis detection. Biosens Bioelectron 2017; 100:577-582. [PMID: 29031228 DOI: 10.1016/j.bios.2017.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 12/24/2022]
Abstract
Juvenile idiopathic arthritis (JIA) is a wide group of diseases, characterized by synovial inflammation and joint tissue damage. Due to the delay in the implementation of biomarkers into clinical practice and the association with severe sequels, there is an imperative need for new JIA diagnosis strategies. Electrochemical biosensors based on screen-printed electrodes and peptides are promising alternatives for molecular diagnosis. In this work, a novel biosensor for detecting juvenile idiopathic arthritis (JIA) was developed based on the immobilization of the PRF+1 mimetic peptide, as recognition biological element, on the surface of screen-printed carbon electrode. This biosensor was able to discriminate the JIA positive and negative serum samples from different individuals using differential pulse voltammetry, presenting limits of detection and quantification in diluted samples of 1:784 (v/v) and 1:235 (v/v), respectively. Evaluation by electrochemical impedance spectroscopy showed RCT 3 times higher for JIA positive sample than for a pool of human serum samples from healthy individuals. Surface analysis of the biosensor by atomic force microscopy, after contact with JIA positive serum, presented great globular clusters irregularly distributed. The long-term stability of the biosensor was evaluated, remaining functional for over 40 days of storage (after storage at 8°C). Therefore, a simple, miniaturized and selective biosensor was developed, being the first one based on mimetic peptide and screen-printed carbon electrode, aiming at the diagnosis of the juvenile idiopathic arthritis in real serum samples.
Collapse
Affiliation(s)
- V R Rodovalho
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - G R Araujo
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - E R Vaz
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - C Ueira-Vieira
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - L R Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - J M Madurro
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - A G Brito-Madurro
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
20
|
Jiang B, Yuan Y, Zhang X, Feng Z, Liu C. Separation and Enrichment of Lectin from Zihua Snap-Bean (Phaseolus vulgaris) Seeds by PEG 600-Ammonium Sulfate Aqueous Two-Phase System. Molecules 2017; 22:E1596. [PMID: 28937648 PMCID: PMC6151553 DOI: 10.3390/molecules22101596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022] Open
Abstract
A fast and efficient method based on a polyethylene glycol (PEG) 600/(NH₄)₂SO₄ aqueous two-phase system for extracting lectin from Zihua snap-bean (Phaseolus vulgaris) seeds was established. According to a Box-Behnken design (BBD), involving four factors at three levels each subjected to analysis of variance (ANOVA) and response surface analysis, the protein recovery and the purification factor of lectin in the top phase were used as the response values of the variance analysis to acquire the multivariate quadratic regression model. SDS-PAGE electrophoresis and the hemagglutination test were used to detect the distribution of lectin in the aqueous two-phase system (ATPS). The obtained data indicated that lectin was preferentially partitioned into the PEG-rich phase, and the ATPS, composed of 15% (NH₄)₂SO₄ (w/w), 18% PEG 600 (w/w), 0.4 g/5 g NaCl and 1 mL crude extract, showed good selectivity for lectin when the pH value was 7.5. Under the optimal conditions, most of the lectin was assigned to the top phase in the ATPS, and the hemagglutination activity of the purified lectin in the top phase was 3.08 times that of the crude extract. Consequently, the PEG 600/(NH₄)₂SO₄ aqueous two-phase system was an effective method for separating and enriching lectin directly from the crude extract of Zihua snap-bean seeds.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Applied Chemistry, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| | - Yongqiang Yuan
- Department of Applied Chemistry, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| | - Xiaoqing Zhang
- Department of Applied Chemistry, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| | - Zhibiao Feng
- Department of Applied Chemistry, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| | - Chunhong Liu
- Department of Applied Chemistry, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| |
Collapse
|
21
|
Siontorou CG, Nikoleli GP, Nikolelis DP, Karapetis SK. Artificial Lipid Membranes: Past, Present, and Future. MEMBRANES 2017; 7:E38. [PMID: 28933723 PMCID: PMC5618123 DOI: 10.3390/membranes7030038] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 11/17/2022]
Abstract
The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life.
Collapse
Affiliation(s)
- Christina G Siontorou
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industry, University of Piraeus, 18534 Piraeus, Greece.
| | - Georgia-Paraskevi Nikoleli
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Department of Chemical Sciences, National Technical University of Athens, 15780 Athens, Greece.
| | - Dimitrios P Nikolelis
- Laboratory of Environmental Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece.
| | - Stefanos K Karapetis
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Department of Chemical Sciences, National Technical University of Athens, 15780 Athens, Greece.
| |
Collapse
|
22
|
Coelho LCBB, Silva PMDS, Lima VLDM, Pontual EV, Paiva PMG, Napoleão TH, Correia MTDS. Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:1594074. [PMID: 28367220 PMCID: PMC5359455 DOI: 10.1155/2017/1594074] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
Abstract
Lectins are proteins extensively used in biomedical applications with property to recognize carbohydrates through carbohydrate-binding sites, which identify glycans attached to cell surfaces, glycoconjugates, or free sugars, detecting abnormal cells and biomarkers related to diseases. These lectin abilities promoted interesting results in experimental treatments of immunological diseases, wounds, and cancer. Lectins obtained from virus, microorganisms, algae, animals, and plants were reported as modulators and tool markers in vivo and in vitro; these molecules also play a role in the induction of mitosis and immune responses, contributing for resolution of infections and inflammations. Lectins revealed healing effect through induction of reepithelialization and cicatrization of wounds. Some lectins have been efficient agents against virus, fungi, bacteria, and helminths at low concentrations. Lectin-mediated bioadhesion has been an interesting characteristic for development of drug delivery systems. Lectin histochemistry and lectin-based biosensors are useful to detect transformed tissues and biomarkers related to disease occurrence; antitumor lectins reported are promising for cancer therapy. Here, we address lectins from distinct sources with some biological effect and biotechnological potential in the diagnosis and therapeutic of diseases, highlighting many advances in this growing field.
Collapse
Affiliation(s)
| | - Priscila Marcelino dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Vera Lúcia de Menezes Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Maria Tereza dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| |
Collapse
|
23
|
Wang B, Anzai JI. Recent Progress in Lectin-Based Biosensors. MATERIALS (BASEL, SWITZERLAND) 2015; 8:8590-8607. [PMID: 28793731 PMCID: PMC5458863 DOI: 10.3390/ma8125478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022]
Abstract
This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A) is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx) and horseradish peroxidase (HRP) on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells.
Collapse
Affiliation(s)
- Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
24
|
Parkash O, Shueb RH. Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques. Viruses 2015; 7:5410-27. [PMID: 26492265 PMCID: PMC4632385 DOI: 10.3390/v7102877] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/01/2015] [Accepted: 09/09/2015] [Indexed: 12/12/2022] Open
Abstract
Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.
Collapse
Affiliation(s)
- Om Parkash
- Department of Medical Microbiology and Parasitology, School of Medical Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
25
|
van den Hurk R, Evoy S. A Review of Membrane-Based Biosensors for Pathogen Detection. SENSORS 2015; 15:14045-78. [PMID: 26083229 PMCID: PMC4507637 DOI: 10.3390/s150614045] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 01/14/2023]
Abstract
Biosensors are of increasing interest for the detection of bacterial pathogens in many applications such as human, animal and plant health, as well as food and water safety. Membranes and membrane-like structures have been integral part of several pathogen detection platforms. Such structures may serve as simple mechanical support, function as a part of the transduction mechanism, may be used to filter out or concentrate pathogens, and may be engineered to specifically house active proteins. This review focuses on membrane materials, their associated biosensing applications, chemical linking procedures, and transduction mechanisms. The sensitivity of membrane biosensors is discussed, and the state of the field is evaluated and summarized.
Collapse
Affiliation(s)
- Remko van den Hurk
- Department of Electrical and Computer Engineering, University of Alberta Edmonton, Alberta, AB T6G 2V4, Canada.
| | - Stephane Evoy
- Department of Electrical and Computer Engineering, University of Alberta Edmonton, Alberta, AB T6G 2V4, Canada.
| |
Collapse
|