1
|
Cecchet F. Light on the interactions between nanoparticles and lipid membranes by interface-sensitive vibrational spectroscopy. Colloids Surf B Biointerfaces 2024; 241:114013. [PMID: 38865867 DOI: 10.1016/j.colsurfb.2024.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Nanoparticles are produced in natural phenomena or synthesized artificially for technological applications. Their frequent contact with humans has been judged potentially harmful for health, and numerous studies are ongoing to understand the mechanisms of the toxicity of nanoparticles. At the macroscopic level, the toxicity can be established in vitro or in vivo by measuring the survival of cells. At the sub-microscopic level, scientists want to unveil the molecular mechanisms of the first interactions of nanoparticles with cells via the cell membrane, before the toxicity cascades within the whole cell. Unveiling a molecular understanding of the nanoparticle-membrane interface is a tricky challenge, because of the chemical complexity of this system and its nanosized dimensions buried within bulk macroscopic environments. In this review, we highlight how, in the last 10 years, second-order nonlinear optical (NLO) spectroscopy, and specifically vibrational sum frequency generation (SFG), has provided a new understanding of the structural, physicochemical, and dynamic properties of these biological interfaces, with molecular sensitivity. We will show how the intrinsic interfacial sensitivity of second-order NLO and the chemical information of vibrational SFG spectroscopy have revealed new knowledge of the molecular mechanisms that drive nanoparticles to interact with cell membranes, from both sides, the nanoparticles and the membrane properties.
Collapse
Affiliation(s)
- Francesca Cecchet
- Laboratory of Lasers and Spectroscopies (LLS), Namur Institute of Structured Matter (NISM) and NAmur Institute for Life Sciences (NARILIS), University of Namur (UNamur), Belgium.
| |
Collapse
|
2
|
Saak CM, Dreier LB, Machel K, Bonn M, Backus EHG. Biological lipid hydration: distinct mechanisms of interfacial water alignment and charge screening for model lipid membranes. Faraday Discuss 2024; 249:317-333. [PMID: 37795538 DOI: 10.1039/d3fd00117b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Studying lipid monolayers as model biological membranes, we demonstrate that water molecules interfacing with different model membranes can display preferential orientation for two distinct reasons: due to charges on the membrane, and due to large dipole fields resulting from zwitterionic headgroups. This preferential water orientation caused by the charge or the dipolar field can be effectively neutralized to net-zero water orientation by introducing monolayer counter-charges (i.e. lipids with oppositely charged headgroups). Following the Gouy-Chapman model, the effect of monolayer surface charge on water orientation is furthermore strongly dependent on the electrolyte concentration and thus on the counterions in solution. In contrast, the effect of ions in the subphase on the dipolar alignment of water is zero. As a result, the capability of monolayer counter-charges to null the effect of dipolar orientation is strongly electrolyte-dependent. Notably, the different effects are additive for mixed charged/zwitterionic lipid systems occurring in nature. Specifically, for an E. coli lipid membrane extract consisting of both zwitterionic and negatively charged lipids, the water orientation can be explained by the sum of the constituents. Our results can be quantitatively reproduced using Gouy-Chapman theory, revealing the relatively straightforward electrostatic effects on the hydration of complex membrane interfaces.
Collapse
Affiliation(s)
- Clara-Magdalena Saak
- Faculty of Chemistry, Institute of Physical Chemistry, University of Vienna, Währingerstrasse 42, 1090, Vienna, Austria.
| | - Lisa B Dreier
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Kevin Machel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ellen H G Backus
- Faculty of Chemistry, Institute of Physical Chemistry, University of Vienna, Währingerstrasse 42, 1090, Vienna, Austria.
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
3
|
Tan SW, Yoon BK, Jackman JA. Membrane-Disruptive Effects of Fatty Acid and Monoglyceride Mitigants on E. coli Bacteria-Derived Tethered Lipid Bilayers. Molecules 2024; 29:237. [PMID: 38202820 PMCID: PMC10780109 DOI: 10.3390/molecules29010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
We report electrochemical impedance spectroscopy measurements to characterize the membrane-disruptive properties of medium-chain fatty acid and monoglyceride mitigants interacting with tethered bilayer lipid membrane (tBLM) platforms composed of E. coli bacterial lipid extracts. The tested mitigants included capric acid (CA) and monocaprin (MC) with 10-carbon long hydrocarbon chains, and lauric acid (LA) and glycerol monolaurate (GML) with 12-carbon long hydrocarbon chains. All four mitigants disrupted E. coli tBLM platforms above their respective critical micelle concentration (CMC) values; however, there were marked differences in the extent of membrane disruption. In general, CA and MC caused larger changes in ionic permeability and structural damage, whereas the membrane-disruptive effects of LA and GML were appreciably smaller. Importantly, the distinct magnitudes of permeability changes agreed well with the known antibacterial activity levels of the different mitigants against E. coli, whereby CA and MC are inhibitory and LA and GML are non-inhibitory. Mechanistic insights obtained from the EIS data help to rationalize why CA and MC are more effective than LA and GML at disrupting E. coli membranes, and these measurement capabilities support the potential of utilizing bacterial lipid-derived tethered lipid bilayers for predictive assessment of antibacterial drug candidates and mitigants.
Collapse
Affiliation(s)
- Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Walsh OD, Choi L, Sigdel KP. Effect of CM15 on Supported Lipid Bilayer Probed by Atomic Force Microscopy. MEMBRANES 2023; 13:864. [PMID: 37999350 PMCID: PMC10672887 DOI: 10.3390/membranes13110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Antimicrobial peptides are key components of the immune system. These peptides affect the membrane in various ways; some form nano-sized pores, while others only produce minor defects. Since these peptides are increasingly important in developing antimicrobial drugs, understanding the mechanism of their interactions with lipid bilayers is critical. Here, using atomic force microscopy (AFM), we investigated the effect of a synthetic hybrid peptide, CM15, on the membrane surface comprising E. coli polar lipid extract. Direct imaging of supported lipid bilayers exposed to various concentrations of the peptide revealed significant membrane remodeling. We found that CM15 interacts with supported lipid bilayers and forms membrane-spanning defects very quickly. It is found that CM15 is capable of remodeling both leaflets of the bilayer. For lower CM15 concentrations, punctate void-like defects were observed, some of which re-sealed themselves as a function of time. However, for CM15 concentrations higher than 5 µM, the defects on the bilayers became so widespread that they disrupted the membrane integrity completely. This work enhances the understanding of CM15 interactions with the bacterial lipid bilayer.
Collapse
Affiliation(s)
| | | | - Krishna P. Sigdel
- Department of Physics and Astronomy, California State Polytechnic University, Pomona, CA 91768, USA
| |
Collapse
|
5
|
Krok E, Stephan M, Dimova R, Piatkowski L. Tunable biomimetic bacterial membranes from binary and ternary lipid mixtures and their application in antimicrobial testing. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184194. [PMID: 37328023 DOI: 10.1016/j.bbamem.2023.184194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
The reconstruction of accurate yet simplified mimetic models of cell membranes is a very challenging goal of synthetic biology. To date, most of the research focuses on the development of eukaryotic cell membranes, while reconstitution of their prokaryotic counterparts has not been fully addressed, and the proposed models do not reflect well the complexity of bacterial cell envelopes. Here, we describe the reconstitution of biomimetic bacterial membranes with an increasing level of complexity, developed from binary and ternary lipid mixtures. Giant unilamellar vesicles composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE); PC and phosphatidylglycerol (PG); PE and PG; PE, PG and cardiolipin (CA) at varying molar ratios were successfully prepared by the electroformation method. Each of the proposed mimetic models focuses on reproducing specific membrane features such as membrane charge, curvature, leaflets asymmetry, or the presence of phase separation. GUVs were characterized in terms of size distribution, surface charge, and lateral organization. Finally, the developed models were tested against the lipopeptide antibiotic daptomycin. The obtained results showed a clear dependency of daptomycin binding efficiency on the amount of negatively charged lipid species present in the membrane. We anticipate that the models proposed here can be applied not only in antimicrobial testing but also serve as platforms for studying fundamental biological processes in bacteria as well as their interaction with physiologically relevant biomolecules.
Collapse
Affiliation(s)
- Emilia Krok
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland; Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| | - Mareike Stephan
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| | - Lukasz Piatkowski
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland
| |
Collapse
|
6
|
Valenti GE, Alfei S, Caviglia D, Domenicotti C, Marengo B. Antimicrobial Peptides and Cationic Nanoparticles: A Broad-Spectrum Weapon to Fight Multi-Drug Resistance Not Only in Bacteria. Int J Mol Sci 2022; 23:ijms23116108. [PMID: 35682787 PMCID: PMC9181033 DOI: 10.3390/ijms23116108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
In the last few years, antibiotic resistance and, analogously, anticancer drug resistance have increased considerably, becoming one of the main public health problems. For this reason, it is crucial to find therapeutic strategies able to counteract the onset of multi-drug resistance (MDR). In this review, a critical overview of the innovative tools available today to fight MDR is reported. In this direction, the use of membrane-disruptive peptides/peptidomimetics (MDPs), such as antimicrobial peptides (AMPs), has received particular attention, due to their high selectivity and to their limited side effects. Moreover, similarities between bacteria and cancer cells are herein reported and the hypothesis of the possible use of AMPs also in anticancer therapies is discussed. However, it is important to take into account the limitations that could negatively impact clinical application and, in particular, the need for an efficient delivery system. In this regard, the use of nanoparticles (NPs) is proposed as a potential strategy to improve therapy; moreover, among polymeric NPs, cationic ones are emerging as promising tools able to fight the onset of MDR both in bacteria and in cancer cells.
Collapse
Affiliation(s)
- Giulia E. Valenti
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy;
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy;
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (B.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
- Correspondence: ; Tel.: +39-010-353-8830
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (B.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
7
|
El-Beyrouthy J, Freeman E. Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology. MEMBRANES 2021; 11:319. [PMID: 33925756 PMCID: PMC8145864 DOI: 10.3390/membranes11050319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
The cell membrane is a protective barrier whose configuration determines the exchange both between intracellular and extracellular regions and within the cell itself. Consequently, characterizing membrane properties and interactions is essential for advancements in topics such as limiting nanoparticle cytotoxicity. Characterization is often accomplished by recreating model membranes that approximate the structure of cellular membranes in a controlled environment, formed using self-assembly principles. The selected method for membrane creation influences the properties of the membrane assembly, including their response to electric fields used for characterizing transmembrane exchanges. When these self-assembled model membranes are combined with electrophysiology, it is possible to exploit their non-physiological mechanics to enable additional measurements of membrane interactions and phenomena. This review describes several common model membranes including liposomes, pore-spanning membranes, solid supported membranes, and emulsion-based membranes, emphasizing their varying structure due to the selected mode of production. Next, electrophysiology techniques that exploit these structures are discussed, including conductance measurements, electrowetting and electrocompression analysis, and electroimpedance spectroscopy. The focus of this review is linking each membrane assembly technique to the properties of the resulting membrane, discussing how these properties enable alternative electrophysiological approaches to measuring membrane characteristics and interactions.
Collapse
Affiliation(s)
| | - Eric Freeman
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
8
|
Ma L, Luo Y, Ma YH, Lu X. Interaction between Antimicrobial Peptide CM15 and a Model Cell Membrane Affected by CM15 Terminal Amidation and the Membrane Phase State. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1613-1621. [PMID: 33464910 DOI: 10.1021/acs.langmuir.0c03498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antimicrobial peptides (AMPs) have been proposed as an effective class of antimicrobial agents against microorganisms. In this work, the interaction between an antimicrobial peptide, CM15, and a negatively charged phospholipid bilayer, DPPG, was studied via sum frequency generation (SFG) vibrational spectroscopy. Two structurally correlated characteristic variables were introduced to reveal the interaction mechanism/efficiency, i.e. C-terminal amidation and temperature variation (∼20 °C, room temperature, and ∼35 °C, close to human body temperature). Experimental results indicated that owing to the increased positive charge, C-terminal amidation resulted in rapid adsorption onto the bilayer surface and efficient disruption of the outer layer, exhibiting less ordered insertion orientation. The elevated temperature (from ∼20 °C to ∼35 °C) promoted the penetration of both the outer and inner leaflets by the peptides and finally led to the disruption of the whole bilayer owing to the enhanced fluidity of the bilayer. From the perspective of the interaction mechanism, this experimental study provides two practical cues to understand the disruption process of the negatively charged model biomembranes, which can lay the structural foundation for designing and developing high-efficiency antimicrobial peptides.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| | - Yongsheng Luo
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| | - Yong-Hao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| |
Collapse
|
9
|
Zhong C, Zhang L, Yu L, Huang J, Huang S, Yao Y. A Review for Antimicrobial Peptides with Anticancer Properties: Re-purposing of Potential Anticancer Agents. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract In recent years, various research on cancer treatment has achieved significant progress. However, some of these treatments remain disputable because of the emergence and development of drug resistance, and the toxic side effects that were brought about by the lack
of selectivity displayed by the treatments. Hence, there is considerable interest in a new class of anticancer molecules that is currently still under investigation termed the cationic antimicrobial peptides (AMPs). AMPs are a group of pervasive components of the innate immunity which can
be found throughout all classes of life. The small innate peptides cover a broad spectrum of antibacterial activities due to their electrostatic interactions with the negatively charged bacterial membrane. Compared with normal cells, cancer cells have increased proportions of negatively charged
molecules, including phosphatidylserine, glycoproteins, and glycolipids, on the outer plasma membrane. This provides an opportunity for exploiting the interaction between AMPs and negatively charged cell membranes in developing unconventional anticancer strategies. Some AMPs may also be categorized
into a group of potential anticancer agents called cationic anticancer peptides (ACPs) due to their relative selectivity in cell membrane penetration and lysis, which is similar to their interaction with bacterial membranes. Several examples of ACPs that are used in tumor therapy for their
ability in penetrating or lysing tumor cell membrane will be reviewed in this paper, along with a discussion on the recent advances and challenges in the application of ACPs.
Collapse
Affiliation(s)
- Cuiyu Zhong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lin Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiandong Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Songyin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yandan Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
10
|
Hammond K, Ryadnov MG, Hoogenboom BW. Atomic force microscopy to elucidate how peptides disrupt membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183447. [PMID: 32835656 DOI: 10.1016/j.bbamem.2020.183447] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy is an increasingly attractive tool to study how peptides disrupt membranes. Often performed on reconstituted lipid bilayers, it provides access to time and length scales that allow dynamic investigations with nanometre resolution. Over the last decade, AFM studies have enabled visualisation of membrane disruption mechanisms by antimicrobial or host defence peptides, including peptides that target malignant cells and biofilms. Moreover, the emergence of high-speed modalities of the technique broadens the scope of investigations to antimicrobial kinetics as well as the imaging of peptide action on live cells in real time. This review describes how methodological advances in AFM facilitate new insights into membrane disruption mechanisms.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; Department of Physics, King's College London, Strand Lane, London WC2R 2LS, UK.
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Lin T, Guo W, Guo R, Chen Z. Probing Biological Molecule Orientation and Polymer Surface Structure at the Polymer/Solution Interface In Situ. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7681-7690. [PMID: 32525691 DOI: 10.1021/acs.langmuir.0c01319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymers are widely used for many applications ranging from biomedical materials, marine antifouling coatings, membranes for biomolecule separation, to substrates for enzyme molecules for biosensing. For such applications, it is important to understand molecular interactions between biological molecules and polymer materials in situ in real time. Such understanding provides vital knowledge to manipulate biological molecule-polymer interactions and to optimize polymer surface structures to improve polymer performance. In this research, sum frequency generation (SFG) vibrational spectroscopy was applied to study interactions between peptides (serving as models for biological molecules) and deuterated polystyrene (d8-PS, serving as a model for polymer materials). The peptide conformations/orientations and polymer surface phenyl orientation during the peptide-d8-PS interactions were determined using SFG. It was found that the π-π interaction between the aromatic amino acids on peptides and phenyl groups on d8-PS surface does not play a significant role. Instead, the peptide-d8-PS interactions are mediated by general hydrophobic interactions between the peptides and the polymer surface.
Collapse
|
12
|
Shorter Antibacterial Peptide Having High Selectivity for E. coli Membranes and Low Potential for Inducing Resistance. Microorganisms 2020; 8:microorganisms8060867. [PMID: 32521823 PMCID: PMC7356157 DOI: 10.3390/microorganisms8060867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been recognised as a significant therapeutic option for mitigating resistant microbial infections. It has been found recently that Plasmodium falciparum-derived, 20 residue long, peptide 35409 had antibacterial and haemolytic activity, making it an AMP having reduced selectivity, and suggesting that it should be studied more extensively for obtaining new AMPs having activity solely targeting the bacterial membrane. Peptide 35409 was thus used as template for producing short synthetic peptides (<20 residues long) and evaluating their biological activity and relevant physicochemical characteristics for therapeutic use. Four of the sixteen short peptides evaluated here had activity against E. coli without any associated haemolytic effects. The 35409-1 derivative (17 residues long) had the best therapeutic characteristics as it had high selectivity for bacterial cells, stability in the presence of human sera, activity against E. coli multiresistant clinical isolates and was shorter than the original sequence. It had a powerful membranolytic effect and low potential for inducing resistance in bacteria. This peptide’s characteristics highlighted its potential as an alternative for combating infection caused by E. coli multiresistant bacteria and/or for designing new AMPs.
Collapse
|
13
|
Barreto-Santamaría A, Patarroyo ME, Curtidor H. Designing and optimizing new antimicrobial peptides: all targets are not the same. Crit Rev Clin Lab Sci 2019; 56:351-373. [DOI: 10.1080/10408363.2019.1631249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adriana Barreto-Santamaría
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad Nacional de Colombia - Bogotá, Faculty of Medicine, Bogotá D.C., Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| |
Collapse
|
14
|
Guo HY, Cao B, Deng G, Hao XL, Wu FG, Yu ZW. Effect of Imidazolium-Based Ionic Liquids on the Structure and Phase Behavior of Palmitoyl-oleoyl-phosphatidylethanolamine. J Phys Chem B 2019; 123:5474-5482. [PMID: 31244097 DOI: 10.1021/acs.jpcb.9b03562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among various applications, ionic liquids (ILs) have been used as antimicrobial agents in laboratories, possibly through induction of the leakage of bacteria. A molecular-level understanding of the mechanism that describes how ILs enhance the permeation of membranes is still lacking. In this study, the effects of imidazolium-based ILs with different alky chain lengths on the structure and phase behavior of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE), which is a representative bacteria-membrane-rich lipid, have been investigated. By employing differential scanning calorimetry and synchrotron small- and wide-angle X-ray scattering techniques, we found that ILs with longer alkyl chains influenced the phase behavior more effectively, and lower IL concentrations are needed to induce phase separation for both lamellar liquid crystalline phase and nonlamellar inverted hexagonal phase of POPE. Interestingly, the IL with an alkyl chain of 12 carbon atoms ([C12mim]Cl) shows a difference. It exhibits a stronger disturbing effect on the POPE bilayer structure than [C16mim]Cl, indicating that the ability of ILs to influence the membrane structures is dependent not only on the alkyl chain length of ILs, but also on the degree of matching of the alkyl chain lengths of ILs and lipids. The new lamellar and nonlamellar structures induced by ILs both have smaller repeat distances than that of pure POPE, implying thinner membrane structures. Data of the fluorescence-based vesicle dye leakage assay are consistent with these results, particularly the defects caused by IL-induced phase separation can enhance the membrane permeability markedly. The present work may shed light on our understanding of the antimicrobial mechanism of ILs.
Collapse
Affiliation(s)
- Hao-Yue Guo
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Bobo Cao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Geng Deng
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Xiao-Lei Hao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , People's Republic of China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
15
|
Mato A, Tarazona NA, Hidalgo A, Cruz A, Jiménez M, Pérez-Gil J, Prieto MA. Interfacial Activity of Phasin PhaF from Pseudomonas putida KT2440 at Hydrophobic-Hydrophilic Biointerfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:678-686. [PMID: 30580527 DOI: 10.1021/acs.langmuir.8b03036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phasins, the major proteins coating polyhydroxyalkanoate (PHA) granules, have been proposed as suitable biosurfactants for multiple applications because of their amphiphilic nature. In this work, we analyzed the interfacial activity of the amphiphilic α-helical phasin PhaF from Pseudomonas putida KT2440 at different hydrophobic-hydrophilic interfacial environments. The binding of PhaF to surfaces containing PHA or phospholipids, postulated as structural components of PHA granules, was confirmed in vitro using supported lipid bilayers and confocal microscopy, with polyhydroxyoctanoate- co-hexanoate P(HO- co-HHx) and Escherichia coli lipid extract as model systems. The surfactant-like capabilities of PhaF were determined by measuring changes in surface pressure in Langmuir devices. PhaF spontaneously adsorbed at the air-water interface, reducing the surface tension from 72 mN/m (water surface tension at 25 °C) to 50 mN/m. The differences in the adsorption of the protein in the presence of different phospholipid films showed a marked preference for phosphatidylglycerol species, such as 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphoglycerol. The PHA-binding domain of PhaF (BioF) conserved a similar surface activity to PhaF, suggesting that it is responsible for the surfactant properties of the whole protein. These new findings not only increase our knowledge about the role of phasins in the PHA machinery but also open new outlooks for the application of these proteins as biosurfactants.
Collapse
Affiliation(s)
| | | | - Alberto Hidalgo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | - Antonio Cruz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | | | - Jesús Pérez-Gil
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | | |
Collapse
|
16
|
Hou J, Liu Z, Cao S, Wang H, Jiang C, Hussain MA, Pang S. Broad-Spectrum Antimicrobial Activity and Low Cytotoxicity against Human Cells of a Peptide Derived from Bovine α S1-Casein. Molecules 2018; 23:E1220. [PMID: 29783753 PMCID: PMC6100444 DOI: 10.3390/molecules23051220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/05/2018] [Accepted: 05/17/2018] [Indexed: 11/24/2022] Open
Abstract
The primary objective of this study was to improve our understanding of the antimicrobial mechanism of protein-derived peptides and to provide evidence for protein-derived peptides as food bio-preservatives by examining the antimicrobial activities, low cytotoxicity, stabilities, and mechanism of Cp1 (LRLKKYKVPQL). In this study, the protein-derived peptide Cp1 was synthesized from bovine αS1-casein, and its potential use as a food biopreservative was indicated by the higher cell selectivity shown by 11-residue peptide towards bacterial cells than human RBCs. It also showed broad-spectrum antimicrobial activity, with minimum inhibitory concentrations (MICs) of 64⁻640 μM against both gram-positive and gram-negative bacteria. The peptide had low hemolytic activity (23.54%, 512 μM) as well as cytotoxicity. The results of fluorescence spectroscopy, flow cytometry, and electron microscopy experiments indicated that Cp1 exerted its activity by permeabilizing the microbial membrane and destroying cell membrane integrity. We found that Cp1 had broad-spectrum antimicrobial activity, low hemolytic activity, and cytotoxicity. The results also revealed that Cp1 could cause cell death by permeabilizing the cell membrane and disrupting membrane integrity. Overall, the findings presented in this study improve our understanding of the antimicrobial potency of Cp1 and provided evidence of the antimicrobial mechanisms of Cp1. The peptide Cp1 could have potential applications as a food biopreservative.
Collapse
Affiliation(s)
- Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhijing Liu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Songsong Cao
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Haimei Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Chenggang Jiang
- Harbin Veterinary Research Institute, CAAS, Harbin 150001, China.
| | - Muhammad Altaf Hussain
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Shiyue Pang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| |
Collapse
|
17
|
Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 2018; 8:46635-46651. [PMID: 28422728 PMCID: PMC5542299 DOI: 10.18632/oncotarget.16743] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
McGeachy AC, Caudill ER, Liang D, Cui Q, Pedersen JA, Geiger FM. Counting charges on membrane-bound peptides. Chem Sci 2018; 9:4285-4298. [PMID: 29780560 PMCID: PMC5944241 DOI: 10.1039/c8sc00804c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/02/2018] [Indexed: 01/27/2023] Open
Abstract
Quantifying the number of charges on peptides bound to interfaces requires reliable estimates of (i) surface coverage and (ii) surface charge, both of which are notoriously difficult parameters to obtain, especially at solid/water interfaces. Here, we report the thermodynamics and electrostatics governing the interactions of l-lysine and l-arginine octamers (Lys8 and Arg8) with supported lipid bilayers prepared.
Quantifying the number of charges on peptides bound to interfaces requires reliable estimates of (i) surface coverage and (ii) surface charge, both of which are notoriously difficult parameters to obtain, especially at solid/water interfaces. Here, we report the thermodynamics and electrostatics governing the interactions of l-lysine and l-arginine octamers (Lys8 and Arg8) with supported lipid bilayers prepared from a 9 : 1 mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (DMPG) from second harmonic generation (SHG) spectroscopy, quartz crystal microbalance with dissipation monitoring (QCM-D) and nanoplasmonic sensing (NPS) mass measurements, and atomistic simulations. The combined SHG/QCM-D/NPS approach provides interfacial charge density estimates from mean field theory for the attached peptides that are smaller by a factor of approximately two (0.12 ± 0.03 C m–2 for Lys8 and 0.10 ± 0.02 C m–2 for Arg8) relative to poly-l-lysine and poly-l-arginine. These results, along with atomistic simulations, indicate that the surface charge density of the supported lipid bilayer is neutralized by the attached cationic peptides. Moreover, the number of charges associated with each attached peptide is commensurate with those found in solution; that is, Lys8 and Arg8 are fully ionized when attached to the bilayer. Computer simulations indicate Lys8 is more likely than Arg8 to “stand-up” on the surface, interacting with lipid headgroups through one or two sidechains while Arg8 is more likely to assume a “buried” conformation, interacting with the bilayer through up to six sidechains. Analysis of electrostatic potential and charge distribution from atomistic simulations suggests that the Gouy–Chapman model, which is widely used for mapping surface potential to surface charge, is semi-quantitatively valid; despite considerable orientational preference of interfacial water, the apparent dielectric constant for the interfacial solvent is about 30, due to the thermal fluctuation of the lipid–water interface.
Collapse
Affiliation(s)
- Alicia C McGeachy
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60660 , USA .
| | - Emily R Caudill
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , WI 53706 , USA
| | - Dongyue Liang
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , WI 53706 , USA
| | - Qiang Cui
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , WI 53706 , USA.,Department of Chemistry , Boston University , 590 Commonwealth Ave. , Boston , MA 02215 , USA
| | - Joel A Pedersen
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , WI 53706 , USA.,Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 660 North Park Street , Madison , WI 53706 , USA.,Department of Soil Science , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , WI 53706 , USA.,Department of Civil & Environmental Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , WI 53706 , USA
| | - Franz M Geiger
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60660 , USA .
| |
Collapse
|
19
|
Understanding the antimicrobial properties/activity of an 11-residue Lys homopeptide by alanine and proline scan. Amino Acids 2018; 50:557-568. [DOI: 10.1007/s00726-018-2542-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/11/2018] [Indexed: 12/20/2022]
|
20
|
Mukherjee S, Kar RK, Nanga RPR, Mroue KH, Ramamoorthy A, Bhunia A. Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer. Phys Chem Chem Phys 2018; 19:19289-19299. [PMID: 28702543 DOI: 10.1039/c7cp01941f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multidrug resistance against the existing antibiotics is one of the most challenging threats across the globe. Antimicrobial peptides (AMPs), in this regard, are considered to be one of the effective alternatives that can overcome bacterial resistance. MSI-594, a 24-residue linear alpha-helical cationic AMP, has been shown to function via the carpet mechanism to disrupt bacterial membrane systems. To better understand the role of lipid composition in the function of MSI-594, in the present study, eight different model membrane systems have been studied using accelerated molecular dynamics (aMD) simulations. The simulated results are helpful in discriminating the particular effects of cationic MSI-594 against zwitterionic POPC, anionic POPG and POPS, and neutral POPE lipid moieties. Additionally, the effects of various heterogeneous POPC/POPG (7 : 3), POPC/POPS (7 : 3), and POPG/POPE (1 : 3 and 3 : 1) bilayer systems on the dynamic interaction of MSI-594 have also been investigated. The effect on the lipid bilayer due to the interaction with the peptide is characterized by lipid acyl-chain order, membrane thickness, and acyl-chain dynamics. Our simulation results show that the lipid composition affects the membrane interaction of MSI-594, suggesting that membrane selectivity is crucial to its mechanism of action. The results reported in this study are helpful to obtain accurate atomistic-level information governing MSI-594 and its membrane disruptive antimicrobial mechanism of action, and to design next generation potent antimicrobial peptides.
Collapse
Affiliation(s)
- Shruti Mukherjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.
| | - Rajiv K Kar
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.
| | - Ravi Prakash Reddy Nanga
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA. and Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kamal H Mroue
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.
| |
Collapse
|
21
|
Edwards IA, Elliott AG, Kavanagh AM, Blaskovich MAT, Cooper MA. Structure-Activity and -Toxicity Relationships of the Antimicrobial Peptide Tachyplesin-1. ACS Infect Dis 2017; 3:917-926. [PMID: 28960954 DOI: 10.1021/acsinfecdis.7b00123] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tachyplesin-1 (TP1; 1) is a cationic β-hairpin antimicrobial peptide with a membranolytic mechanism of action. While it possesses broad-spectrum, potent antimicrobial activity, 1 is highly hemolytic against mammalian erythrocytes, which precludes it from further development. In this study, we report a template-based approach to investigate the structure-function and structure-toxicity relationships of each amino acid of 1. We modulated charge and hydrophobicity by residue modification and truncation of the peptide. Antimicrobial activity was then assessed against six key bacterial pathogens and two fungi, with toxicity profiled against mammalian cells. The internal disulfide bridge Cys7-Cys12 of 1 was shown to play an important role in broad-spectrum antimicrobial activity against all pathogenic strains tested. Novel peptides based on the progenitor were then designed, including 5 (TP1[F4A]), 12 (TP1[I11A]), and 19 (TP1[C3A,C16A]). These had 26- to 64-fold improved activity/toxicity indices and show promise for further development. Structural studies of 5 (TP1[F4A]) and 12 (TP1[I11A]) identified a conserved β-hairpin secondary structure motif correlating with their very high stablility in mouse and human plasma. Membrane binding affinity determined by surface plasmon resonance confirmed their selectivity toward bacterial membranes, but the degree of membrane binding did not correlate with the degree of hemolysis, suggesting that other factors may drive toxicity.
Collapse
Affiliation(s)
- Ingrid A. Edwards
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road (Building 80), Brisbane, Queensland 4072 Australia
| | - Alysha G. Elliott
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road (Building 80), Brisbane, Queensland 4072 Australia
| | - Angela M. Kavanagh
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road (Building 80), Brisbane, Queensland 4072 Australia
| | - Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road (Building 80), Brisbane, Queensland 4072 Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road (Building 80), Brisbane, Queensland 4072 Australia
| |
Collapse
|
22
|
Booth V, Warschawski DE, Santisteban NP, Laadhari M, Marcotte I. Recent progress on the application of 2H solid-state NMR to probe the interaction of antimicrobial peptides with intact bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1500-1511. [PMID: 28844739 DOI: 10.1016/j.bbapap.2017.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Discoveries relating to innate immunity and antimicrobial peptides (AMPs) granted Bruce Beutler and Jules Hoffmann a Nobel prize in medicine in 2011, and opened up new avenues for the development of therapies against infections, and even cancers. The mechanisms by which AMPs interact with, and ultimately disrupt, bacterial cell membranes is still, to a large extent, incompletely understood. Up until recently, this mechanism was studied using model lipid membranes that failed to reproduce the complexity of molecular interactions present in real cells comprising lipids but also membrane proteins, a cell wall containing peptidoglycan or lipopolysaccharides, and other molecules. In this review, we focus on recent attempts to study, at the molecular level, the interaction between cationic AMPs and intact bacteria, by 2H solid-state NMR. Specifically-labeled lipids allow us to focus on the interaction of AMPs with the heart of the bacterial membrane, and measure the lipid order and its variation upon interaction with various peptides. We will review the important parameters to consider in such a study, and summarize the results obtained in the past 5years on various peptides, in particular aurein 1.2, caerin 1.1, MSI-78 and CA(1-8)M(1-10). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Dror E Warschawski
- UMR 7099, CNRS - Université Paris Diderot, IBPC, 13 rue Pierre et Marie Curie, F-75005 Paris, France; Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal H3C 3P8, Canada
| | - Nury P Santisteban
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Marwa Laadhari
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal H3C 3P8, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal H3C 3P8, Canada.
| |
Collapse
|
23
|
Ermakova E, Zuev Y. Interaction of Scots Pine Defensin with Model Membrane by Coarse-Grained Molecular Dynamics. J Membr Biol 2017; 250:205-216. [DOI: 10.1007/s00232-017-9950-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/06/2017] [Indexed: 01/23/2023]
|
24
|
Korchowiec B, Gorczyca M, Korchowiec J, Rubio-Magnieto J, Lotfallah AH, Luis SV, Rogalska E. Structure membrane activity relationship in a family of peptide-based gemini amphiphiles: An insight from experimental and theoretical model systems. Colloids Surf B Biointerfaces 2016; 146:54-62. [DOI: 10.1016/j.colsurfb.2016.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/26/2016] [Accepted: 05/15/2016] [Indexed: 01/28/2023]
|
25
|
Lis D, Cecchet F. Unique Vibrational Features as a Direct Probe of Specific Antigen-Antibody Recognition at the Surface of a Solid-Supported Hybrid Lipid Bilayer. Chemphyschem 2016; 17:2645-9. [PMID: 27324112 DOI: 10.1002/cphc.201600419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 11/09/2022]
Abstract
Here, we demonstrate how sum frequency generation (SFG), a vibrational spectroscopy based on a nonlinear three-photon mixing process, may provide a direct and unique fingerprint of bio-recognition; This latter can be detected with an intrinsically discriminating unspecific adsorption, thanks to the high sensitivity of the second-order nonlinear optical (NLO) response to preferential molecular orientation and symmetry properties. As a proof of concept, we have detected the biological event at the solid/liquid interface of a model bio-active antigen platform, based on a solid-supported hybrid lipid bilayer (ss-HLB) of a 2,4-dinitrophenyl (DNP) lipid, towards a monoclonal mouse anti-DNP complementary antibody.
Collapse
Affiliation(s)
- Dan Lis
- Research Centre in Physics of Matter and Radiation (PMR), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Francesca Cecchet
- Research Centre in Physics of Matter and Radiation (PMR), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|
26
|
Membrane interactions of proline-rich antimicrobial peptide, Chex1-Arg20, multimers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1236-43. [PMID: 26926423 DOI: 10.1016/j.bbamem.2016.02.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/15/2016] [Accepted: 02/24/2016] [Indexed: 01/10/2023]
Abstract
The increasing prevalence of antibiotic-resistant pathogens requires the development of new antibiotics. Proline-rich antimicrobial peptides (PrAMPs), including native apidaecins, Bac7, and oncocins or designed A3APO, show multi-modal actions against pathogens together with immunostimulatory activities. The interactions of the designed PrAMP, Chex1-Arg20, and its dimeric and tetrameric oligomers with different model membranes were investigated by circular dichroism spectroscopy, dynamic light scattering, zeta potential, differential scanning calorimetry, and dye leakage. Chex1-Arg20 oligomers showed stronger affinity and preferential binding to negatively charged phospholipid bilayers and led to lipid aggregation and neutralization. Fluorescence microscopy of negatively charged giant unilamellar vesicles with AlexFluor-647-labeled Chex1-Arg20 dimers and tetramers displayed aggregation at a peptide/lipid low ratio of 1:200 and at higher peptide concentrations (1:100/1:50) for Chex1-Arg20 monomer. Such interactions, aggregation, and neutralization of PrAMP oligomers additionally showed the importance of interactions of PrAMPs with negatively charged membranes.
Collapse
|