1
|
Turina AV, Clop EM, Perillo MA. Natural terpenes II. Concentration-dependent profile of effects on dynamic organization of biological and model membranes. Biochem Biophys Res Commun 2024; 745:151179. [PMID: 39729675 DOI: 10.1016/j.bbrc.2024.151179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
Monoterpenes (MTs), the major constituents of plant essential oils, cover a broad spectrum of biological activities through their interaction with biomembranes. MTs are highly hydrophobic substances with a net electrical dipole, but are not clearly amphipathic. As a result, they aggregate at increasing concentrations in aqueous media, and in membrane environments their behavior changes from dynamics modulators to disruptors. In the present work we have tried to find the boundaries between these conditions. Using spin-label electron paramagnetic resonance (EPR) spectroscopy, we studied the effect of a wide range of concentrations of camphor, cineole, thymol, menthol and geraniol on the dynamics of phospholipid model membranes, with or without cholesterol, organized in different initial lyotropic phases, as well as on synaptosomal membranes from bovine brain cortex. EPR spectra of two fatty acid spin probes incorporated into the membranes (5-SASL and 12-SASL) provided information on molecular order and mobility at different bilayer depths. Qualitative changes in the spectra indicated transitions between monomeric and aggregated MTs, as well as membranes with different degrees of order and disrupted membranes. Analyzed in conjunction with the kinetics of [3H]flunitrazepam membrane binding, either non-specifically to the membrane or specifically to the GABAA receptor, the present results allowed us to define 200 μM as the concentration limit to safely evaluate MT effects in non-disrupted biological and model membranes. These findings may be helpful in the interpretation and design of pharmacological assays and provide concentration references that allow correlating a variety of biophysical and pharmacological data in the literature.
Collapse
Affiliation(s)
- A V Turina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT). Córdoba, Argentina.
| | - E M Clop
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT). Córdoba, Argentina
| | - M A Perillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT). Córdoba, Argentina.
| |
Collapse
|
2
|
Effects of insecticide acephate on membrane mimetic systems: The role played by electrostatic interactions with lipid polar headgroups. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Maximino MD, Silva CY, Cavalcante DGSM, Martin CS, Job AE, Oliveira ON, Aléssio P. Consequences of the exposure to bisphenol A in cell membrane models at the molecular level and hamster ovary cells viability. Colloids Surf B Biointerfaces 2021; 203:111762. [PMID: 33887667 DOI: 10.1016/j.colsurfb.2021.111762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022]
Abstract
The inadequate disposal and the difficulty in its removal from water treatment systems have made the endocrine disruptor bisphenol A (BPA) a significant hazard for humans and animals. The molecular-level mechanisms of BPA action are not known in detail, which calls for systematic investigations using cell membrane models. This paper shows that BPA affects Langmuir monolayers and giant unilamellar vesicles (GUVs) of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) used as membrane models, in a concentration-dependent manner and with effects that depend on BPA aggregation. BPA increases DPPC monolayer fluidity in surface pressure isotherms upon interacting with the headgroups through hydrogen bonding, according to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). In DPPC GUVs, BPA induced wrinkling and distortion in the spherical shape of the vesicles, but this was only observed for fresh solutions where it is not aggregated. BPA also decreased the viability of hamster ovary cells (CHO) in in vitro experiments. In contrast, aged, aggregated BPA solutions did not affect the GUVs and even increased CHO viability. These results may be rationalized in terms of size-dependent effects of BPA, which may be relevant for its endocrine-disrupting effects.
Collapse
Affiliation(s)
- Mateus D Maximino
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil.
| | - Carla Y Silva
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| | - Dalita G S M Cavalcante
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| | - Cibely S Martin
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| | - Aldo E Job
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Priscila Aléssio
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, 19060-080, Brazil
| |
Collapse
|
4
|
Miguel V, Sánchez-Borzone ME, Mariani ME, García DA. Modulation of membrane physical properties by natural insecticidal ketones. Biophys Chem 2021; 269:106526. [PMID: 33348175 DOI: 10.1016/j.bpc.2020.106526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022]
Abstract
The insecticidal activity of Mentha oil and its main components has been tested and established for various insects/pests. Several mint ketones have demonstrated to act on GABAA receptors (GABAA-R), a transmembrane channel target of several important insecticides whose activity can be modulated by surface-active compounds and by changes in the physical properties of the lipid membrane. In the present work, we analyze the capacity of monoterpenic ketones most commonly found in Mentha species, pulegone and menthone, to interact with DPPC membranes by molecular dynamics (MD) simulations and Langmuir monolayers. The experimental results indicate that the presence of menthone and pulegone in the subphase modify the interfacial characteristics of DPPC isotherms. The changes were reflected as expansion of the isotherms and disappearance or bringing forward of DPPC phase transition. MD simulation corroborate these results and indicate that both ketones are located at the region of the carbonyl group, at the interface with the acyl chains. Ketone intercalation between lipid molecules would induce an increasing intermolecular interaction, diminishing the film elasticity and causing an ordering effect. Our results suggest that the insecticidal activity of both ketones could involve their interaction with lipid molecules causing disturbance of the cell membrane as postulated for several larvicide compounds, or at least modulating the receptor surrounding.
Collapse
Affiliation(s)
- V Miguel
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET, Córdoba, Argentina
| | - M E Sánchez-Borzone
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET, Córdoba, Argentina
| | - M E Mariani
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET, Córdoba, Argentina
| | - D A García
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET, Córdoba, Argentina.
| |
Collapse
|
5
|
Felsztyna I, Sánchez-Borzone ME, Miguel V, García DA. The insecticide fipronil affects the physical properties of model membranes: A combined experimental and molecular dynamics simulations study in Langmuir monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183378. [DOI: 10.1016/j.bbamem.2020.183378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022]
|
6
|
A way to introducing a hydrophilic bioactive agent into model lipid membranes. The role of cetyl palmitate in the interaction of curcumin with 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine monolayers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Zou Y, Pan R, Liu Y, Liu X, Chen X, Wang J, Wan Z, Guo J, Yang X. Effects of γ-zein peptides on lipid membrane organization: Quartz crystal microbalance with dissipation and Langmuir monolayer studies. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Interaction of gabaergic ketones with model membranes: A molecular dynamics and experimental approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1563-1570. [DOI: 10.1016/j.bbamem.2018.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/28/2023]
|
9
|
Zou Y, Pan R, Ruan Q, Wan Z, Guo J, Yang X. Interaction of Soybean 7S Globulin Peptide with Cell Membrane Model via Isothermal Titration Calorimetry, Quartz Crystal Microbalance with Dissipation, and Langmuir Monolayer Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4913-4922. [PMID: 29634259 DOI: 10.1021/acs.jafc.8b00414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To understand the underlying molecular mechanism of the cholesterol-lowering effect of soybean 7S globulins, the interactions of their pepsin-released peptides (7S-peptides) with cell membrane models consisting of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL) were systematically studied. The results showed that 7S-peptides were bound to DPPC/DOPC/CHOL liposomes mainly through van der Waals forces and hydrogen bonds, and the presence of higher CHOL concentrations enhanced the binding affinity (e.g., DPPC/DOPC/CHOL = 1:1:0, binding ratio = 0.114; DPPC/DOPC/CHOL = 1:1:1, binding ratio = 2.02). Compression isotherms indicated that the incorporation of 7S-peptides increased the DPPC/DOPC/CHOL monolayer fluidity and the lipid raft size. The presence of CHOL accelerated the 7S-peptide accumulation on lipid rafts, which could serve as platforms for peptides to develop into β-sheet rich structures. These results allow us to hypothesize that 7S-peptides may indirectly influence membrane protein functions via altering the membrane organization in the enterocytes.
Collapse
Affiliation(s)
- Yuan Zou
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Runting Pan
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Qijun Ruan
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Zhili Wan
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Jian Guo
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| | - Xiaoquan Yang
- Food Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , P. R China
| |
Collapse
|
10
|
Wang ZJ, Heinbockel T. Essential Oils and Their Constituents Targeting the GABAergic System and Sodium Channels as Treatment of Neurological Diseases. Molecules 2018; 23:E1061. [PMID: 29724056 PMCID: PMC6099651 DOI: 10.3390/molecules23051061] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022] Open
Abstract
Essential oils and the constituents in them exhibit different pharmacological activities, such as antinociceptive, anxiolytic-like, and anticonvulsant effects. They are widely applied as a complementary therapy for people with anxiety, insomnia, convulsion, pain, and cognitive deficit symptoms through inhalation, oral administration, and aromatherapy. Recent studies show that essential oils are emerging as a promising source for modulation of the GABAergic system and sodium ion channels. This review summarizes the recent findings regarding the pharmacological properties of essential oils and compounds from the oils and the mechanisms underlying their effects. Specifically, the review focuses on the essential oils and their constituents targeting the GABAergic system and sodium channels, and their antinociceptive, anxiolytic, and anticonvulsant properties. Some constituents target transient receptor potential (TRP) channels to exert analgesic effects. Some components could interact with multiple therapeutic target proteins, for example, inhibit the function of sodium channels and, at the same time, activate GABAA receptors. The review concentrates on perspective compounds that could be better candidates for new drug development in the control of pain and anxiety syndromes.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Anatomy, Howard University College of Medicine, 520 W Str., NW, Washington, DC 20059, USA.
| | - Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, 520 W Str., NW, Washington, DC 20059, USA.
| |
Collapse
|
11
|
Hąc-Wydro K, Flasiński M, Broniatowski M, Sołtys M. Studies on the Behavior of Eucalyptol and Terpinen-4-ol-Natural Food Additives and Ecological Pesticides-in Model Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6916-6924. [PMID: 28654274 DOI: 10.1021/acs.langmuir.7b00774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Effective application of the essential oils requires detailed exploration of their mechanism of action and the origin of diverse activity of their components. In this work, the influence of eucalyptol and terpinen-4-ol on artificial membranes was studied to verify whether the differences in the activity of these compounds are related to their effect on membranes. The properties of monolayers formed from structurally different lipids in the presence of terpenes were examined based on the results of the surface pressure-area measurements, penetration studies, and Brewster angle microscopy experiments. Both compounds were able to incorporate into the membrane and alter lipid/lipid interactions, making the monolayer less stable and more fluid. These effects were determined by monolayer composition (but not by its condensation per se) and the resulting rheological properties and were stronger in the presence of terpinen-4-ol. These findings confirm the hypothesis that differences in the antimicrobial potency of these terpenes are membrane-related, and membrane composition may determine their selectivity.
Collapse
Affiliation(s)
- Katarzyna Hąc-Wydro
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University , Gronostajowa 3, 30-387, Kraków, Poland
| | - Michał Flasiński
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University , Gronostajowa 3, 30-387, Kraków, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University , Gronostajowa 3, 30-387, Kraków, Poland
| | - Monika Sołtys
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University , Gronostajowa 3, 30-387, Kraków, Poland
| |
Collapse
|
12
|
Applications of Brewster angle microscopy from biological materials to biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1749-1766. [PMID: 28655618 DOI: 10.1016/j.bbamem.2017.06.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022]
Abstract
Brewster angle microscopy (BAM) is a powerful technique that allows for real-time visualization of Langmuir monolayers. The lateral organization of these films can be investigated, including phase separation and the formation of domains, which may be of different sizes and shapes depending on the properties of the monolayer. Different molecules or small changes within a molecule such as the molecule's length or presence of a double bond can alter the monolayer's lateral organization that is usually undetected using surface pressure-area isotherms. The effect of such changes can be clearly observed using BAM in real-time, under full hydration, which is an experimental advantage in many cases. While previous BAM reviews focused more on selected compounds or compared the impact of structural variations on the lateral domain formation, this review provided a broader overview of BAM application using biological materials and systems including the visualization of amphiphilic molecules, proteins, drugs, extracts, DNA, and nanoparticles at the air-water interface.
Collapse
|
13
|
Effect of Cd 2+ and Cd 2+ /auxin mixtures on lipid monolayers – Model membrane studies on the role of auxins in phytoremediation of metal ions from contaminated environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1164-1171. [DOI: 10.1016/j.bbamem.2017.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/11/2017] [Accepted: 03/22/2017] [Indexed: 01/17/2023]
|
14
|
Hąc-Wydro K, Flasiński M, Romańczuk K. Essential oils as food eco-preservatives: Model system studies on the effect of temperature on limonene antibacterial activity. Food Chem 2017; 235:127-135. [PMID: 28554616 DOI: 10.1016/j.foodchem.2017.05.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 11/26/2022]
Abstract
Antimicrobial properties of essential oils predestine these substances to be used as ecological food preservatives. However, their activity is determined by variety of factors among which external conditions and food properties are highly important. Herein the influence of limonene on artificial membranes was studied to verify the effect of temperature on the incorporation of this compound into model bacterial membrane. The investigations were done on lipid monolayers and the experiments involved the surface pressure-area measurements, penetration studies and Brewster Angle Microscopy analysis. It was found that limonene incorporates into lipid monolayers causing their fluidization. However, the magnitude of alterations depends on limonene concentration, model membrane composition and, for a given composition, on system condensation. Moreover, the influence of limonene is stronger at lower temperatures and, in the light of collected data, this may be a consequence of strong volatility and evaporation of limonene increasing with temperature.
Collapse
Affiliation(s)
- Katarzyna Hąc-Wydro
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland.
| | - Michał Flasiński
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
| | - Karolina Romańczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
| |
Collapse
|
15
|
Thujone inhibits the function of α 7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm. Toxicology 2017; 384:23-32. [PMID: 28395994 DOI: 10.1016/j.tox.2017.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/21/2022]
Abstract
Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100μM)-induced currents with an IC50 value of 24.7μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca2+-dependent Cl- channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [125I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α7 nACh receptor indicated that thujone suppressed choline induced Ca2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory.
Collapse
|
16
|
Ciumac D, Campbell RA, Xu H, Clifton LA, Hughes AV, Webster JR, Lu JR. Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide. Colloids Surf B Biointerfaces 2017; 150:308-316. [DOI: 10.1016/j.colsurfb.2016.10.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/10/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|