1
|
Agrawal S, Singh GK, Tiwari S. Focused starvation of tumor cells using glucose oxidase: A comprehensive review. Int J Biol Macromol 2024; 281:136444. [PMID: 39389487 DOI: 10.1016/j.ijbiomac.2024.136444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Starvation therapy targets the high metabolic demand of tumor cells. It primarily leans over the consumption of intracellular glucose and simultaneous blockade of alternative metabolic pathways. The strategy involves the use of glucose oxidase (GOx) for catalyzing the conversion of glucose into gluconic acid and hydrogen peroxide. Under these conditions, metabolic re-programming of tumor cells enables the utilization of substrates such as amino acids, fatty acids and lipids. This can be overcome by co-administration of chemo-, photo- and immuno-therapeutics together with glucose oxidase. Targeted delivery of glucose oxidase at tumor site can be enabled with the use of nanoformulations. In this review, we highlight that the outcomes of starvation therapy can be improved using rationally developed nano-formulations. It is possible to load synergistically acting bioactives in these formulations and deliver in site-specific manner and hence achieve the elimination of tumors cells with greater efficacy.
Collapse
Affiliation(s)
- Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Gireesh K Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya 824236, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
2
|
Swain JWR, Yang CY, Hartgerink JD. Orthogonal Self-Assembly of Amphiphilic Peptide Hydrogels and Liposomes Results in Composite Materials with Tunable Release Profiles. Biomacromolecules 2023; 24:5018-5026. [PMID: 37690094 DOI: 10.1021/acs.biomac.3c00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Self-assembled nanomaterials are promising candidates for drug delivery by providing a higher degree of spatiotemporal control compared to free drugs. However, challenges such as burst release, inadequate targeting, and drug-nanomaterial incompatibility leave room for improvement. The combination of orthogonal self-assembling systems can result in more useful materials that improve upon these weaknesses. In this work, we investigate an orthogonal self-assembling system of nanofibrous MultiDomain Peptide (MDP) hydrogels encapsulating liposomes. Both positively charged and negatively charged MDPs were prepared and mixed with positively charged, negatively charged, or zwitterionic liposomes for a total of six composites. We demonstrate that, despite both systems being amphiphilic, they are able to mix while retaining their independent identities. We show that changing the charge of either liposomes or MDPs does not hinder the self-assembly of either system or significantly affect their rheological properties. In all six cases, small molecules encapsulated in liposome-MDP composites resulted in slower release than was possible in MDP hydrogels alone. However, in one case, positively charged MDPs destabilized negatively charged liposomes and resulted in a unique release profile. Finally, we show that MDP hydrogels substantially decrease the release of chemotherapeutic doxorubicin from its liposomal formulation, Doxil, for 24 h. This work demonstrates the chemical compatibility of amphiphilic, orthogonally self-assembled systems and the range of their drug-delivering capabilities.
Collapse
|
3
|
Davoudi S, Raemdonck K, Braeckmans K, Ghysels A. Capric Acid and Myristic Acid Permeability Enhancers in Curved Liposome Membranes. J Chem Inf Model 2023; 63:6789-6806. [PMID: 37917127 DOI: 10.1021/acs.jcim.3c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Liposomes are considered as advanced drug delivery systems for cancer treatment. A generation of pH-sensitive liposomes is being developed that use fatty acids (FAs) as a trigger for drug release in tumor tissues. However, FAs are also known to enhance permeability, and it is unclear whether FAs in liposomes may cause drug leakage or premature drug release. The passive permeability of the drug through the membrane of the liposome is thus a crucial factor for timely drug delivery. To investigate how the curvature and lipid composition of liposomes affect their passive permeability, coarse-grained molecular dynamics were performed. The permeability was determined with a counting method. Flat bilayers and three liposomes with varying diameters were studied, which had varying lipid compositions of dipalmitoylphosphatidylcholine, cholesterol, and deprotonated or neutral saturated FAs. The investigated permeants were water and two other small permeants, which have different free energy profiles (solubility) across the membrane. First, for the curvature effect, our results showed that curvature increases the water permeability by reducing the membrane thickness. The permeability increase for water is about a factor of 1.7 for the most curved membranes. However, a high curvature decreases permeability for permeants with free energy profiles that are a mix of wells and barriers in the headgroup region of the membrane. Importantly, the type of experimental setup is expected to play a dominant role in the permeability value, i.e., whether permeants are escaping or entering the liposomes. Second, for the composition effect, FAs decrease both the area per lipid (APL) and the membrane thickness, resulting in permeability increases of up to 55%. Cholesterol has a similar effect on the APL but has the opposite impact on membrane thickness and permeability. Therefore, FAs and cholesterol have opposing effects on permeability, with cholesterol's effect being slightly stronger in our simulated bilayers. As all permeability values were well within a factor of 2, and with liposomes usually being larger and less curved in experimental applications, it can be concluded that the passive drug release from a pH-sensitive liposome does not seem to be significantly affected by the presence of FAs.
Collapse
Affiliation(s)
- Samaneh Davoudi
- IBiTech─BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Block B-Entrance 36, 9000 Gent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Kevin Braeckmans
- Bio-Photonic Imaging Group, Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - An Ghysels
- IBiTech─BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Block B-Entrance 36, 9000 Gent, Belgium
| |
Collapse
|
4
|
Xu B, Li J, Zhang S, Zeb J, Chen S, Yuan Q, Gan W. The Transport of Charged Molecules across Three Lipid Membranes Investigated with Second Harmonic Generation. Molecules 2023; 28:molecules28114330. [PMID: 37298807 DOI: 10.3390/molecules28114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Subtle variations in the structure and composition of lipid membranes can have a profound impact on their transport of functional molecules and relevant cell functions. Here, we present a comparison of the permeability of bilayers composed of three lipids: cardiolipin, DOPG (1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)). The adsorption and cross-membrane transport of a charged molecule, D289 (4-(4-diethylaminostyry)-1-methyl-pyridinium iodide), on vesicles composed of the three lipids were monitored by second harmonic generation (SHG) scattering from the vesicle surface. It is revealed that structural mismatching between the saturated and unsaturated alkane chains in POPG leads to relatively loose packing structure in the lipid bilayers, thus providing better permeability compared to unsaturated lipid bilayers (DOPG). This mismatching also weakens the efficiency of cholesterol in rigidifying the lipid bilayers. It is also revealed that the bilayer structure is somewhat disturbed by the surface curvature in small unilamellar vesicles (SUVs) composed of POPG and the conical structured cardiolipin. Such subtle information on the relationship between the lipid structure and the molecular transport capability of the bilayers may provide clues for drug development and other medical and biological studies.
Collapse
Affiliation(s)
- Baomei Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shuai Zhang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Johar Zeb
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shunli Chen
- Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
5
|
Improved accuracy and reproducibility of spontaneous liposome leakage measurements by the use of supported lipid bilayer-modified quartz cuvettes. Colloids Surf B Biointerfaces 2022; 221:113022. [DOI: 10.1016/j.colsurfb.2022.113022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
|
6
|
Solid Magnetoliposomes as Multi-Stimuli-Responsive Systems for Controlled Release of Doxorubicin: Assessment of Lipid Formulations. Biomedicines 2022; 10:biomedicines10051207. [PMID: 35625942 PMCID: PMC9138220 DOI: 10.3390/biomedicines10051207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Stimuli-responsive liposomes are a class of nanocarriers whose drug release occurs, preferentially, when exposed to a specific biological environment, to an external stimulus, or both. This work is focused on the design of solid magnetoliposomes (SMLs) as lipid-based nanosystems aiming to obtain multi-stimuli-responsive vesicles for doxorubicin (DOX) controlled release in pathological areas under the action of thermal, magnetic, and pH stimuli. The effect of lipid combinations on structural, colloidal stability, and thermodynamic parameters were evaluated. The results confirmed the reproducibility for SMLs synthesis based on nine lipid formulations (combining DPPC, DSPC, CHEMS, DOPE and/or DSPE-PEG), with structural and colloidal properties suitable for biological applications. A loss of stability and thermosensitivity was observed for formulations containing dioleoylphosphatidylethanolamine (DOPE) lipid. SMLs PEGylation is an essential step to enhance both their long-term storage stability and stealth properties. DOX encapsulation (encapsulation efficiency ranging between 87% and 96%) in the bilayers lowered its pKa, which favors the displacement of DOX from the acyl chains to the surface when changing from alkaline to acidic pH. The release profiles demonstrated a preferential release at acidic pH, more pronounced under mimetic mild-hyperthermia conditions (42 °C). Release kinetics varied with the lipid formulation, generally demonstrating hyperthermia temperatures and acidic pH as determining factors in DOX release; PEGylation was shown to act as a diffusion barrier on the SMLs surface. The integrated assessment and characterization of SMLs allows tuning lipid formulations that best respond to the needs for specific controlled release profiles of stimuli-responsive nanosystems as a multi-functional approach to cancer targeting and therapy.
Collapse
|
7
|
The spatial arrangement of astaxanthin in bilayers greatly influenced the structural stability of DPPC liposomes. Colloids Surf B Biointerfaces 2022; 212:112383. [PMID: 35131712 DOI: 10.1016/j.colsurfb.2022.112383] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/16/2022]
Abstract
Liposomes are regarded as the ideal nanocarrier for concurrent or separate delivery of nutraceuticals in the food industries. Precise control of the structural stability is essential for the processing, storage, and nutrition delivery of liposomes. Astaxanthin was found to significantly affect the membrane stability of liposomes by inserting into the phospholipid bilayers in a similar way to cholesterol. Compared with cholesterol, astaxanthin could significantly improve the phase transition temperature, membrane fluidity, and membrane compactness of liposomes. Additionally, the membrane stability was well modulated by controlling the distribution patterns of astaxanthin (monomers, H- and J-aggregates) in bilayers. For instance, astaxanthin H-aggregates could endow the liposomal membrane with highest rigidity and compactness. Additionally, astaxanthin aggregates, especially J-aggregates could greatly improve storage stability of liposomes, thus providing a novel strategy to regulate and optimize the stability of liposomes for their diversified applications.
Collapse
|
8
|
Batishchev OV, Alekseeva AS, Tretiakova DS, Galimzyanov TR, Chernyadyev AY, Onishchenko NR, Volynsky PE, Boldyrev IA. Cyclopentane rings in hydrophobic chains of a phospholipid enhance the bilayer stability to electric breakdown. SOFT MATTER 2020; 16:3216-3223. [PMID: 32161934 DOI: 10.1039/c9sm02001b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Archaeal lipids ensure unprecedented stability of archaea membranes in extreme environments. Here, we incorporate a characteristic structural feature of an archaeal lipid, the cyclopentane ring, into hydrocarbon chains of a short-chain (C12) phosphatidylcholine to explore whether the insertion would allow such a lipid (1,2-di-(3-(3-hexylcyclopentyl)-propanoate)-sn-glycero-3-phosphatidylcholine, diC12cp-PC) to form stable bilayers at room temperature. According to fluorescence-based assays, in water diC12cp-PC formed liquid-crystalline bilayers at room temperature. Liposomes produced from diC12cp-PC retained calcein for over a week when stored at +4 °C. diC12cp-PC could also form model bilayer lipid membranes that were by an order of magnitude more stable to electrical breakdown than egg PC membranes. Molecular dynamics simulation showed that the cyclopentane fragment fixes five carbon atoms (or four C-C bonds), which is compensated by the higher mobility of the rest of the chain. This was found to be the reason for the remarkable stability of the diC12cp-PC bilayer: restricted conformational mobility of a chain segment increases the membrane bending modulus (compared to a normal hydrocarbon chain of the same length). Here, higher stiffness practically does not affect the line tension of a membrane pore edge. Rather it makes it more difficult for diC12cp-PC to rearrange in order to line the edge of a hydrophilic pore; therefore, fewer pores are formed.
Collapse
Affiliation(s)
- Oleg V Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Daria S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Timur R Galimzyanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia and National University of Science and Technology MISiS, Moscow, 119049, Russia
| | - Andrey Yu Chernyadyev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Natalia R Onishchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Pavel E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|