1
|
Zhan S, Wu W, Hu J, Liu F, Qiao X, Chen L, Zhou Y. The pathogenicity and regulatory function of temperature-sensitive proteins PscTSP in Pseudofabraea citricarpa under high temperature stress. Int J Biol Macromol 2024; 270:132017. [PMID: 38697438 DOI: 10.1016/j.ijbiomac.2024.132017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Citrus fruit rich in beneficial health-promoting nutrients used for functional foods or dietary supplements production. However, its quality and yield were damaged by citrus target spot. Citrus target spot is a low-temperature fungal disease caused by Pseudofabraea citricarpa, resulting in citrus production reductions and economic losses. In this study, transcriptome and gene knockout mutant analyses were performed on the growth and pathogenicity of P. citricarpa under different temperature conditions to quantify the functions of temperature-sensitive proteins (PscTSP). The optimum growth temperature for P. citricarpa strain WZ1 was 20 °C, while it inhibited or stopped growth above 30 °C and stopped growth below 4 °C or above 30 °C. Certain PscTSP-key genes of P. citricarpa were identified under high temperature stress. qRT-PCR analysis confirmed the expression levels of PscTSPs under high temperature stress. PscTSPs were limited by temperature and deletion of the PscTSP-X gene leads to changes in the integrity of citrus cell walls, osmotic regulation, oxidative stress response, calcium regulation, chitin synthesis, and the pathogenicity of P. citricarpa. These results provide insight into the underlying mechanisms of temperature sensitivity and pathogenicity in P. citricarpa, providing a foundation for developing resistance strategies against citrus target spot disease.
Collapse
Affiliation(s)
- Shuang Zhan
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Wang Wu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Junhua Hu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Scientific Observing and Experimental Station of Fruit Tree Science (Southwest Region), Ministry of Agriculture, Chongqing 400712, China.
| | - Fengjiao Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Xinghua Qiao
- Wanzhou District of Chongqing Plant Protection and Fruit Tree Technology Promotion Station, Wanzhou, 404000, China
| | - Li Chen
- Wanzhou District of Chongqing Plant Protection and Fruit Tree Technology Promotion Station, Wanzhou, 404000, China
| | - Yan Zhou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Scientific Observing and Experimental Station of Fruit Tree Science (Southwest Region), Ministry of Agriculture, Chongqing 400712, China
| |
Collapse
|
2
|
Le Brun AP, Gilbert EP. Advances in sample environments for neutron scattering for colloid and interface science. Adv Colloid Interface Sci 2024; 327:103141. [PMID: 38631095 DOI: 10.1016/j.cis.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
This review describes recent advances in sample environments across the full complement of applicable neutron scattering techniques to colloid and interface science. Temperature, pressure, flow, tensile testing, ultrasound, chemical reactions, IR/visible/UV light, confinement, humidity and electric and magnetic field application, as well as tandem X-ray methods, are all addressed. Consideration for material choices in sample environments and data acquisition methods are also covered as well as discussion of current and potential future use of machine learning and artificial intelligence.
Collapse
Affiliation(s)
- Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| |
Collapse
|
3
|
Gao X, Wei M, Zhang X, Xun Y, Duan M, Yang Z, Zhu M, Zhu Y, Zhuo R. Copper removal from aqueous solutions by white rot fungus Pleurotus ostreatus GEMB-PO1 and its potential in co-remediation of copper and organic pollutants. BIORESOURCE TECHNOLOGY 2024; 395:130337. [PMID: 38244937 DOI: 10.1016/j.biortech.2024.130337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Addressing the environmental contamination from heavy metals and organic pollutants remains a critical challenge. This study explored the resilience and removal potential of Pleurotus ostreatus GEMB-PO1 for copper. P. ostreatus GEMB-PO1 showed significant tolerance, withstanding copper concentrations up to 2 mM. Its copper removal efficiency ranged from 64.56 % at 0.5 mM to 22.90 % at 8 mM. Transcriptomic insights into its response to copper revealed a marked upregulation in xenobiotic degradation-related enzymes, such as laccase and type II peroxidases. Building on these findings, a co-remediation system using P. ostreatus GEMB-PO1 was developed to remove both copper and organic pollutants. While this approach significantly enhanced the degradation efficiency of organic contaminants, it concurrently exhibited a diminished efficacy in copper removal within the composite system. This study underscores the potential of P. ostreatus GEMB-PO1 in environmental remediation. Nevertheless, further investigation is required to optimize the simultaneous removal of organic pollutants and copper.
Collapse
Affiliation(s)
- Xuan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China
| | - Mi Wei
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiaodan Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Yu Xun
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Mifang Duan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Zhilong Yang
- Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China
| | - Mingdong Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China.
| |
Collapse
|
4
|
Wang D, He M, Zhang M, Yang H, Huang J, Zhou R, Jin Y, Wu C. Food yeasts: occurrence, functions, and stress tolerance in the brewing of fermented foods. Crit Rev Food Sci Nutr 2023; 63:12136-12149. [PMID: 35875880 DOI: 10.1080/10408398.2022.2098688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the rapid development of systems biology technology, there is a deeper understanding of the molecular biological mechanisms and physiological characteristics of microorganisms. Yeasts are widely used in the food industry with their excellent fermentation performances. While due to the complex environments of food production, yeasts have to suffer from various stress factors. Thus, elucidating the stress mechanisms of food yeasts and proposing potential strategies to improve tolerance have been widely concerned. This review summarized the recent signs of progress in the variety, functions, and stress tolerance of food yeasts. Firstly, the main food yeasts occurred in fermented foods, and the taxonomy levels are demonstrated. Then, the main functions of yeasts including aroma enhancer, safety performance enhancer, and fermentation period reducer are discussed. Finally, the stress response mechanisms of yeasts and the strategies to improve the stress tolerance of cells are reviewed. Based on sorting out these related recent researches systematically, we hope that this review can provide help and approaches to further exert the functions of food yeasts and improve food production efficiency.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Muwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Corucci G, Batchu KC, Luchini A, Santamaria A, Frewein MPK, Laux V, Haertlein M, Yamaryo-Botté Y, Botté CY, Sheridan T, Tully M, Maestro A, Martel A, Porcar L, Fragneto G. Developing advanced models of biological membranes with hydrogenous and deuterated natural glycerophospholipid mixtures. J Colloid Interface Sci 2023; 645:870-881. [PMID: 37178564 DOI: 10.1016/j.jcis.2023.04.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Cellular membranes are complex systems that consist of hundreds of different lipid species. Their investigation often relies on simple bilayer models including few synthetic lipid species. Glycerophospholipids (GPLs) extracted from cells are a valuable resource to produce advanced models of biological membranes. Here, we present the optimisation of a method previously reported by our team for the extraction and purification of various GPL mixtures from Pichia pastoris. The implementation of an additional purification step by High Performance Liquid Chromatography-Evaporative Light Scattering Detector (HPLC-ELSD) enabled for a better separation of the GPL mixtures from the neutral lipid fraction that includes sterols, and also allowed for the GPLs to be purified according to their different polar headgroups. Pure GPL mixtures at significantly high yields were produced through this approach. For this study, we utilised phoshatidylcholine (PC), phosphatidylserine (PS) and phosphatidylglycerol (PG) mixtures. These exhibit a single composition of the polar head, i.e., PC, PS or PG, but contain several molecular species consisting of acyl chains of varying length and unsaturation, which were determined by Gas Chromatography (GC). The lipid mixtures were produced both in their hydrogenous (H) and deuterated (D) versions and were used to form lipid bilayers both on solid substrates and as vesicles in solution. The supported lipid bilayers were characterised by quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR), whereas the vesicles by small angle X-ray (SAXS) and neutron scattering (SANS). Our results show that despite differences in the acyl chain composition, the hydrogenous and deuterated extracts produced bilayers with very comparable structures, which makes them valuable to design experiments involving selective deuteration with techniques such as NMR, neutron scattering or infrared spectroscopy.
Collapse
Affiliation(s)
- Giacomo Corucci
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France
| | | | - Alessandra Luchini
- European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund, Sweden; Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Andreas Santamaria
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France; Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Moritz Paul Karl Frewein
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France; Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, 8010, Austria
| | - Valèrie Laux
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team & GEMELI Lipidomics Platform, Institute for Advanced Biosciences, CNRS UMR5309, INSERM (-National Institute for Health and Medical Research) U1209, Université Grenoble Alpes, 38000 Grenoble, France
| | - Cyrille Y Botté
- ApicoLipid Team & GEMELI Lipidomics Platform, Institute for Advanced Biosciences, CNRS UMR5309, INSERM (-National Institute for Health and Medical Research) U1209, Université Grenoble Alpes, 38000 Grenoble, France
| | - Thomas Sheridan
- University College Dublin, Belfield, Dublin 4, Dublin, Ireland; AbbVie, Clonshaugh, Dublin 7, Co. Dublin, Ireland
| | - Mark Tully
- European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, CS 40220, 38043, Grenoble, France
| | - Armando Maestro
- Centro de Física de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE - Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Anne Martel
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Lionel Porcar
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France; European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund, Sweden.
| |
Collapse
|
6
|
Identification of Lipopeptide Iturin A Produced by Bacillus amyloliquefaciens NCPSJ7 and Its Antifungal Activities against Fusarium oxysporum f. sp. niveum. Foods 2022; 11:foods11192996. [PMID: 36230072 PMCID: PMC9563565 DOI: 10.3390/foods11192996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus amyloliquefaciens NCPSJ7 showed potential fungicidal activities for the effective control of fungal infection. From the PCR test, the key genes (srfAA, sfp, fenD, bmyB, ituD, and ituC) were detected in B. amyloliquefaciens NCPSJ7. These genes were closely related to the lipopeptides (LPs) synthesis. Next, three LPs families were identified with liquid chromatography–mass spectrometry (LC/MS), including iturin A, fengycin A, and surfactin. After purification with C18, the main active antifungal compound was proven to be C14-iturin A by ESI-HRMS, which has significant activities against fungi. These results proved that C14-iturin A played an important role in inhibiting the growth of fungi for B. amyloliquefaciens NCPSJ7. Furthermore, the isolated LP could inhibit mycelial growth and conidia germination at 30 μg/mL. SEM allowed us to observe that mycelial morphology and conidia germination were also affected. The mycelial ultrastructure TEM observations showed that the external electron-dense outer layer cell wall, which mainly consisted of glycoproteins, was affected. Furthermore, swollen mitochondria, enriched glycogen, and increased vacuoles were also found. LP also affected the intact wall and membranes, leading to their increased permeability, which was proved by propidium iodide (PI) staining and conductivity measurements. Meanwhile, the ergosterol, which has an affinity for iturin A, also increased. These results indicated that LP caused fungal dysfunction and membrane permeability increase, leading to fungal inhibition. Identifying and studying LPs is important in exploring the fungicidal activities of B. amyloliquefaciens, which promotes the use of B. amyloliquefaciens NCPSJ7 as a potential candidate for biocontrol.
Collapse
|
7
|
Gupta T, Mondal AK, Pani I, Chattopadhyay K, Pal SK. Elucidating liquid crystal-aqueous interface for the study of cholesterol-mediated action of a β-barrel pore forming toxin. SOFT MATTER 2022; 18:5293-5301. [PMID: 35790122 DOI: 10.1039/d2sm00447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pore-forming toxins (PFTs) produced by pathogenic bacteria serve as prominent virulence factors with potent cell-killing activity. Most of the β-barrel PFTs form transmembrane oligomeric pores in the membrane lipid bilayer in the presence of cholesterol. The pore-formation mechanisms of the PFTs highlight well-orchestrated regulated events in the membrane environment, which involve dramatic changes in the protein structure and organization. Also, concerted crosstalk between protein and membrane lipid components appears to play crucial roles in the process. Membrane-damaging lesions formed by the pore assembly of the PFTs would also be expected to impose drastic alterations in the membrane organization, details of which remain obscure in most of the cases. Prior reports have established that aqueous interfaces of liquid crystals (LCs) offer promise as responsive interfaces for biomolecular events (at physiologically relevant concentrations), which can be visualized as optical signals. Inspired by this, herein, we sought to understand the lipid membrane interactions of a β-barrel PFT i.e., Vibrio cholerae cytolysin (VCC), using LC-aqueous interfaces. Our results show the formation of dendritic patterns upon the addition of VCC to the lipid embedded with cholesterol over the LC film. In contrast, we did not observe any LC reorientation upon the addition of VCC to the lipid-laden LC-aqueous interface in the absence of cholesterol. An array of techniques such as polarizing optical microscopy (POM), atomic force microscopy (AFM), and fluorescence measurements were utilized to decipher the LC response to the lipid interactions of VCC occurring at these interfaces. Altogether, the results obtained from our study provide a novel platform to explore the mechanistic aspects of the protein-membrane interactions, in the process of membrane pore-formation by the membrane-damaging PFTs.
Collapse
Affiliation(s)
- Tarang Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Ipsita Pani
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| |
Collapse
|
8
|
Nasrollahpour M, Vafaee M, Razzaghi S. Structural and Dynamical Properties of Palmitoyl-Oleoyl Phosphatidylserine Lipid Nanotubes Containing Cholesterols and PEGylated Dioleoyl Phosphatidylethanolamine: A Coarse-Grained Molecular Dynamics Simulation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Lipid bilayer degradation induced by SARS-CoV-2 spike protein as revealed by neutron reflectometry. Sci Rep 2021; 11:14867. [PMID: 34290262 PMCID: PMC8295359 DOI: 10.1038/s41598-021-93996-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2 spike proteins are responsible for the membrane fusion event, which allows the virus to enter the host cell and cause infection. This process starts with the binding of the spike extramembrane domain to the angiotensin-converting enzyme 2 (ACE2), a membrane receptor highly abundant in the lungs. In this study, the extramembrane domain of SARS-CoV-2 Spike (sSpike) was injected on model membranes formed by supported lipid bilayers in presence and absence of the soluble part of receptor ACE2 (sACE2), and the structural features were studied at sub-nanometer level by neutron reflection. In all cases the presence of the protein produced a remarkable degradation of the lipid bilayer. Indeed, both for membranes from synthetic and natural lipids, a significant reduction of the surface coverage was observed. Quartz crystal microbalance measurements showed that lipid extraction starts immediately after sSpike protein injection. All measurements indicate that the presence of proteins induces the removal of membrane lipids, both in the presence and in the absence of ACE2, suggesting that sSpike molecules strongly associate with lipids, and strip them away from the bilayer, via a non-specific interaction. A cooperative effect of sACE2 and sSpike on lipid extraction was also observed.
Collapse
|
10
|
Luchini A, Corucci G, Chaithanya Batchu K, Laux V, Haertlein M, Cristiglio V, Fragneto G. Structural Characterization of Natural Yeast Phosphatidylcholine and Bacterial Phosphatidylglycerol Lipid Multilayers by Neutron Diffraction. Front Chem 2021; 9:628186. [PMID: 33968895 PMCID: PMC8104085 DOI: 10.3389/fchem.2021.628186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic and prokaryotic cell membranes are difficult to characterize directly with biophysical methods. Membrane model systems, that include fewer molecular species, are therefore often used to reproduce their fundamental chemical and physical properties. In this context, natural lipid mixtures directly extracted from cells are a valuable resource to produce advanced models of biological membranes for biophysical investigations and for the development of drug testing platforms. In this study we focused on single phospholipid classes, i.e. Pichia pastoris phosphatidylcholine (PC) and Escherichia coli phosphatidylglycerol (PG) lipids. These lipids were characterized by a different distribution of their respective acyl chain lengths and number of unsaturations. We produced both hydrogenous and deuterated lipid mixtures. Neutron diffraction experiments at different relative humidities were performed to characterize multilayers from these lipids and investigate the impact of the acyl chain composition on the structural organization. The novelty of this work resides in the use of natural extracts with a single class head-group and a mixture of chain compositions coming from yeast or bacterial cells. The characterization of the PC and PG multilayers showed that, as a consequence of the heterogeneity of their acyl chain composition, different lamellar phases are formed.
Collapse
Affiliation(s)
| | - Giacomo Corucci
- Institut Laue Langevin, Grenoble, France.,Université Grenoble Alpes, Ecole Doctorale de Physique, Saint-Martin-d'Héres, France
| | | | | | | | | | - Giovanna Fragneto
- Institut Laue Langevin, Grenoble, France.,Université Grenoble Alpes, Ecole Doctorale de Physique, Saint-Martin-d'Héres, France
| |
Collapse
|
11
|
The Antifungal Mechanism of Amphotericin B Elucidated in Ergosterol and Cholesterol-Containing Membranes Using Neutron Reflectometry. NANOMATERIALS 2020; 10:nano10122439. [PMID: 33291326 PMCID: PMC7762259 DOI: 10.3390/nano10122439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022]
Abstract
We have characterized and compared the structures of ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes before and after interaction with the amphiphilic antifungal drug amphotericin B (AmB) using neutron reflection. AmB inserts into both pure POPC and sterol-containing membranes in the lipid chain region and does not significantly perturb the structure of pure POPC membranes. By selective per-deuteration of the lipids/sterols, we show that AmB extracts ergosterol but not cholesterol from the bilayers and inserts to a much higher degree in the cholesterol-containing membranes. Ergosterol extraction by AmB is accompanied by membrane thinning. Our results provide new insights into the mechanism and antifungal effect of AmB in these simple models of fungal and mammalian membranes and help understand the molecular origin of its selectivity and toxic side effects.
Collapse
|
12
|
Luchini A, Sebastiani F, Tidemand FG, Batchu KC, Campana M, Fragneto G, Cárdenas M, Arleth L. Peptide discs as precursors of biologically relevant supported lipid bilayers. J Colloid Interface Sci 2020; 585:376-385. [PMID: 33307306 DOI: 10.1016/j.jcis.2020.11.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022]
Abstract
Supported lipid bilayers (SLBs) are commonly used to investigate the structure and dynamics of biological membranes. Vesicle fusion is a widely exploited method to produce SLBs. However, this process becomes less favoured when the vesicles contain complex lipid mixtures, e.g. natural lipid extracts. In these cases, it is often necessary to change experimental parameters, such as temperature, to unphysiological values to trigger the SLB formation. This may induce lipid degradation and is also not compatible with including membrane proteins or other biomolecules into the bilayers. Here, we show that the peptide discs, ~10 nm discoidal lipid bilayers stabilized in solution by a self-assembled 18A peptide belt, can be used as precursors for SLBs. The characterizations by means of neutron reflectometry and attenuated total reflectance-FTIR spectroscopy show that SLBs were successfully formed both from synthetic lipid mixtures (surface coverage 90-95%) and from natural lipid mixtures (surface coverage ~85%). Traces of 18A peptide (below 0.02 M ratio) left at the support surface after the bilayer formation do not affect the SLB structure. Altogether, we demonstrate that peptide disc formation of SLBs is much faster than the SLB formation by vesicle fusion and without the need of altering any experimental variable from physiologically relevant values.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| | - Federica Sebastiani
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 21432 Malmö, Sweden
| | | | | | - Mario Campana
- ISIS-STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, United Kingdom
| | - Giovanna Fragneto
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Marité Cárdenas
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 21432 Malmö, Sweden
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Bin Sintang MD, Danthine S, Khalenkow D, Tavernier I, Tzompa Sosa DA, Julmohammad NB, Van de Walle D, Rimaux T, Skirtach A, Dewettinck K. Modulating the crystallization of phytosterols with monoglycerides in the binary mixture systems: mixing behavior and eutectic formation. Chem Phys Lipids 2020; 230:104912. [DOI: 10.1016/j.chemphyslip.2020.104912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
|