1
|
Zhang M, Xiang C, Niu R, He X, Luo W, Liu W, Gu R. Liposomes as versatile agents for the management of traumatic and nontraumatic central nervous system disorders: drug stability, targeting efficiency, and safety. Neural Regen Res 2025; 20:1883-1899. [PMID: 39254548 PMCID: PMC11691476 DOI: 10.4103/nrr.nrr-d-24-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 09/11/2024] Open
Abstract
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied. However, their inability to cross the blood-brain barrier hampers the clinical translation of these therapeutic strategies. Liposomes are nanoparticles composed of lipid bilayers, which can effectively encapsulate drugs and improve drug delivery across the blood-brain barrier and into brain tissue through their targeting and permeability. Therefore, they can potentially treat traumatic and nontraumatic central nervous system diseases. In this review, we outlined the common properties and preparation methods of liposomes, including thin-film hydration, reverse-phase evaporation, solvent injection techniques, detergent removal methods, and microfluidics techniques. Afterwards, we comprehensively discussed the current applications of liposomes in central nervous system diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, traumatic brain injury, spinal cord injury, and brain tumors. Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials. Additionally, their application as drug delivery systems in clinical practice faces challenges such as drug stability, targeting efficiency, and safety. Therefore, we proposed development strategies related to liposomes to further promote their development in neurological disease research.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chunyu Xiang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Renrui Niu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaodong He
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenqi Luo
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wanguo Liu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Gu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Horisaka H, Yokawa S, Suzuki R, Emoto R, Maeda R, Furuno T. Suppression of FcεRI-evoked Degranulation in RBL-2H3 Cells on Gelatin Methacryloyl Hydrogel. Cell Biochem Biophys 2024:10.1007/s12013-024-01657-3. [PMID: 39731647 DOI: 10.1007/s12013-024-01657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
Cell-extracellular matrix (ECM) interactions play multiple roles in developmental, physiological, and pathological processes. ECM stiffness substantially affects cellular morphology, migration, and function. In this study, we investigated the effect of ECM comprising gelatin methacryloyl (GelMA) on the activation of rat basophilic leukemia (RBL-2H3) cells, a model mast cell line. Maintenance of intracellular Ca2+ concentration ([Ca2+]i) elevation and subsequent degranulation, evoked by crosslinking the high-affinity IgE receptors (FcεRI), were significantly suppressed in RBL-2H3 cells on collagen-coated GelMA hydrogel than those on collagen-coated glass dishes and plastic wells. Thapsigargin and phorbol myristate acetate caused sustained [Ca2+]i increase and degranulation to a similar extent in cells on both GelMA hydrogel and plastic wells/glass dishes. F-actin was clearly accumulated along the periphery of RBL-2H3 cells in plane attached to glass, but not GelMA hydrogel, suggesting that the loose actin cytoskeleton of RBL-2H3 cells on GelMA hydrogel caused suppressive degranulation through unstable FcεRI aggregation.
Collapse
Affiliation(s)
- Haruna Horisaka
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Ruriko Suzuki
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Rin Emoto
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Rino Maeda
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Tadahide Furuno
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan.
| |
Collapse
|
3
|
Inoh Y, Ito N, Yokawa S, Suzuki R, Furuno T. Surface charge, but not size, of liposomes is involved in the suppression of rat basophilic leukemia (RBL-2H3) cell degranulation mediated by Akt phosphorylation. Cell Biol Int 2024; 48:1463-1472. [PMID: 39418631 DOI: 10.1002/cbin.12205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 10/19/2024]
Abstract
Cationic liposomes composed of cholesteryl-3β-carboxyamidoethylene-N-hydroxyethylamine (OH-chol) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) inhibit mast cell degranulation mediated via crosslinking of high-affinity IgE receptors (FcεRI). Although the inhibitory efficiency of mast cell degranulation is altered by modifying the ratio of OH-chol and DOPE in cationic liposomes, the manner in which physicochemical properties, such as surface charge and size, influence suppression is not clear. We observed that positive surface charge, but not the size, of liposomes plays a role in suppressing rat basophilic leukemia (RBL-2H3) cell activation. Pretreatment with middle-ratio OH-chol liposomes (zeta potential, 62.2 ± 0.5 mV; diameter, 325.4 ± 7.3 nm) exhibited a larger suppression of RBL-2H3 cell degranulation evoked by FcεRI crosslinking compared with that by low-ratio OH-chol liposomes (zeta potential, 48.6 ± 1.9 mV; diameter, 344.4 ± 25.0 nm), although both liposomes were similarly attached to RBL-2H3 cells. Preparation of middle-ratio OH-chol liposomes, classified roughly by size using an extrusion method, revealed that the liposomal size did not affect the inhibitory efficiency of RBL-2H3 cell activation. Mechanistically, we found that middle-ratio OH-chol liposomes increased the inhibition of antigen-induced Akt phosphorylation compared to low-ratio OH-chol liposomes. We measured the phosphorylation of linker for activation of T cells (LAT) and paxillin, which are important proteins in FcεRI- and focal adhesions (FAs)-mediated signaling, respectively. Middle ratio OH-chol liposomes significantly suppressed antigen-induced paxillin phosphorylation, but did not affect LAT phosphorylation, suggesting that middle-ratio OH-chol liposomes attached to RBL-2H3 cells suppress the degranulation by impairing FA-mediated Akt phosphorylation evoked by FcεRI crosslinking.
Collapse
Affiliation(s)
- Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Nanami Ito
- School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Ruriko Suzuki
- School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | | |
Collapse
|
4
|
Fukui T, Tateno H, Nakamura T, Yamada Y, Sato Y, Iwasaki N, Harashima H, Kadoya K. Retrograde Axonal Transport of Liposomes from Peripheral Tissue to Spinal Cord and DRGs by Optimized Phospholipid and CTB Modification. Int J Mol Sci 2022; 23:6661. [PMID: 35743104 PMCID: PMC9223829 DOI: 10.3390/ijms23126661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Despite recent advancements in therapeutic options for disorders of the central nervous system (CNS), the lack of an efficient drug-delivery system (DDS) hampers their clinical application. We hypothesized that liposomes could be optimized for retrograde transport in axons as a DDS from peripheral tissues to the spinal cord and dorsal root ganglia (DRGs). Three types of liposomes consisting of DSPC, DSPC/POPC, or POPC in combination with cholesterol (Chol) and polyethylene glycol (PEG) lipid were administered to sciatic nerves or the tibialis anterior muscle of mature rats. Liposomes in cell bodies were detected with infrared fluorescence of DiD conjugated to liposomes. Three days later, all nerve-administered liposomes were retrogradely transported to the spinal cord and DRGs, whereas only muscle-administered liposomes consisting of DSPC reached the spinal cord and DRGs. Modification with Cholera toxin B subunit improved the transport efficiency of liposomes to the spinal cord and DRGs from 4.5% to 17.3% and from 3.9% to 14.3% via nerve administration, and from 2.6% to 4.8% and from 2.3% to 4.1% via muscle administration, respectively. Modification with octa-arginine (R8) improved the transport efficiency via nerve administration but abolished the transport capability via muscle administration. These findings provide the initial data for the development of a novel DDS targeting the spinal cord and DRGs via peripheral administration.
Collapse
Affiliation(s)
- Takafumi Fukui
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-8638, Japan; (T.F.); (N.I.)
| | - Hironao Tateno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-8638, Japan; (T.F.); (N.I.)
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (H.T.); (Y.Y.); (Y.S.); (H.H.)
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-8638, Japan; (T.F.); (N.I.)
| |
Collapse
|
5
|
The nano delivery systems and applications of mRNA. Eur J Med Chem 2022; 227:113910. [PMID: 34689071 PMCID: PMC8497955 DOI: 10.1016/j.ejmech.2021.113910] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun.
Collapse
|
6
|
Wang J, Gong J, Wei Z. Strategies for Liposome Drug Delivery Systems to Improve Tumor Treatment Efficacy. AAPS PharmSciTech 2021; 23:27. [PMID: 34907483 DOI: 10.1208/s12249-021-02179-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
In the advancement of tumor therapy, in addition to the search for new antitumor compounds, the development of nano-drug delivery systems has opened up new pathways for tumor treatment by addressing some of the limitations of traditional drugs. Liposomes have received much attention for their high biocompatibility, low toxicity, high inclusivity, and improved drug bioavailability. They are one of the most studied nanocarriers, changing the size and surface characteristics of liposomes to better fit the tumor environment by taking advantage of the unique pathophysiology of tumors. They can also be designed as tumor targeting drug delivery vehicles for the precise delivery of active drugs into tumor cells. This paper reviews the current development of liposome formulations, summarizes the characterization methods of liposomes, and proposes strategies to improve the effectiveness of tumor treatment. Finally, it provides an outlook on the challenges and future directions of the field. Graphical abstract.
Collapse
|
7
|
Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev 2021; 176:113851. [PMID: 34224787 DOI: 10.1016/j.addr.2021.113851] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Liposomal drug delivery represents a highly adaptable therapeutic platform for treating a wide range of diseases. Natural and synthetic lipids, as well as surfactants, are commonly utilized in the synthesis of liposomal drug delivery vehicles. The molecular diversity in the composition of liposomes enables drug delivery with unique physiological functions, such as pH response, prolonged blood circulation, and reduced systemic toxicity. Herein, we discuss the impact of composition on liposome synthesis, function, and clinical utility.
Collapse
|