1
|
Fu M, Critchley K. Inkjet printing of heavy-metal-free quantum dots-based devices: a review. NANOTECHNOLOGY 2024; 35:302002. [PMID: 38640903 DOI: 10.1088/1361-6528/ad40b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Inkjet printing (IJP) has become a versatile, cost-effective technology for fabricating organic and hybrid electronic devices. Heavy-metal-based quantum dots (HM QDs) play a significant role in these inkjet-printed devices due to their excellent optoelectrical properties. Despite their utility, the intrinsic toxicity of HM QDs limits their applications in commercial products. To address this limitation, developing alternative HM-free quantum dots (HMF QDs) that have equivalent optoelectronic properties to HM QD is a promising approach to reduce toxicity and environmental impact. This article comprehensively reviews HMF QD-based devices fabricated using IJP methods. The discussion includes the basics of IJP technology, the formulation of printable HMF QD inks, and solutions to the coffee ring effect. Additionally, this review briefly explores the performance of typical state-of-the-art HMF QDs and cutting-edge characterization techniques for QD inks and printed QD films. The performance of printed devices based on HMF QDs is discussed and compared with those fabricated by other techniques. In the conclusion, the persisting challenges are identified, and perspectives on potential avenues for further progress in this rapidly developing research field are provided.
Collapse
Affiliation(s)
- Min Fu
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Kevin Critchley
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Wang F, Ou Q, Zhang S. Single-atom infrared emission in doped silicon nanocrystals. Phys Chem Chem Phys 2023; 25:28744-28749. [PMID: 37850355 DOI: 10.1039/d3cp03698g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Silicon luminescence, due to silicon being abundant, non-toxic and harmless, is a topic of pivotal importance in optoelectronics and biological imaging. However, a major challenge in developing high-efficiency silicon light sources is the relatively weak allowable transitions. This study focuses on single atom-doped silicon nanocrystals (Si NCs) and theoretically investigates the emission behavior of single atoms within a tetrahedral coordination field. Doping a single atom in Si NCs can result in a ∼102 times improvement at least in the squared transition dipole moment (TDM2), and induce a spectral shift towards near- and mid-infrared wavelengths. These findings offer a strong foundation for designing Si NCs for on-chip optical communication and single photon emitters.
Collapse
Affiliation(s)
- Feilong Wang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| | - Qiongrong Ou
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| | - Shuyu Zhang
- Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Effect of the surface coverage of an alkyl carboxylic acid monolayer on waterborne and cellular uptake behaviors for silicon quantum dots. Sci Rep 2022; 12:17211. [PMID: 36241686 PMCID: PMC9568572 DOI: 10.1038/s41598-022-21698-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/30/2022] [Indexed: 01/06/2023] Open
Abstract
This article reports the development of highly waterborne silicon quantum dots (Si QDs) terminated with a reactive group for grafting of biomolecules. Hydrogen-terminated QDs were prepared by thermal disproportionation of amorphous hydrogen silsesquioxane derived from triethoxysilane followed by hydrofluoric etching. Next, the hydrogenated Si surfaces were exposed to 10-undecenoic acid at different temperatures in Ar atmosphere, yielding the termination of the QDs with a carboxyl group. The thermal hydrosilylation of 10-undecenoic acid yielded the termination of the QDs with a carboxyl group. An increase in molecular coverage of an undecanoic acid (UA) monolayer resulted in both the enhanced increase of zeta-potential in a negative direction for a greater water-dispersity and the increase of absolute quantum yield (QY) of photoluminescence (PL). PLQY improved for ~ 1% to 26% with increasing UA coverage. We assessed the molecular interaction between the UA-SiQDs and HeLa cells by means of cellular uptake experiments using the QDs with different UA coverages. Results showed that the QDs with the highest dispersity in water were not internalized in the cells under confocal fluorescence microscopic observation. In contrast, the QDs with lower coverage of UA monolayer were internalized by endocytosis when incubated with HeLa cells. This contrasting observation opens the possibility of successfully preparing carboxy-capped SiQDs that do not allow cellular uptake but are targeted to specific cells by appropriate conjugation with biomolecules.
Collapse
|
4
|
Furey BJ, Stacy BJ, Shah T, Barba-Barba RM, Carriles R, Bernal A, Mendoza BS, Korgel BA, Downer MC. Two-Photon Excitation Spectroscopy of Silicon Quantum Dots and Ramifications for Bio-Imaging. ACS NANO 2022; 16:6023-6033. [PMID: 35357114 DOI: 10.1021/acsnano.1c11428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-photon excitation in the near-infrared (NIR) of colloidal nanocrystalline silicon quantum dots (nc-SiQDs) with photoluminescence also in the NIR has potential opportunities in the field of deep biological imaging. Spectra of the degenerate two-photon absorption (2PA) cross section of colloidal nc-SiQDs are measured using two-photon excitation over a spectral range 1.46 < ℏω < 1.91 eV (wavelength 850 > λ > 650 nm) above the two-photon band gap Eg(QD)/2, and at a representative photon energy ℏω = 0.99 eV (λ = 1250 nm) below this gap. Two-photon excited photoluminescence (2PE-PL) spectra of nc-SiQDs with diameters d = 1.8 ± 0.2 nm and d = 2.3 ± 0.3 nm, each passivated with 1-dodecene and dispersed in toluene, are calibrated in strength against 2PE-PL from a known concentration of Rhodamine B dye in methanol. The 2PA cross section is observed to be smaller for the smaller diameter nanocrystals, and the onset of 2PA is observed to be blue shifted from the two-photon indirect band gap of bulk Si, as expected for quantum confinement of excitons. The efficiencies of nc-SiQDs for bioimaging using 2PE-PL are simulated in various biological tissues and compared to efficiencies of other quantum dots and molecular fluorophores and found to be comparable or superior at greater depths.
Collapse
Affiliation(s)
- Brandon J Furey
- Department of Physics, University of Texas at Austin, 2515 Speedway, C1600, Austin, Texas 78712, United States
| | - Benjamin J Stacy
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street, C0400, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas at Austin, 204 E. Dean Keeton Street, C2201, Austin, Texas 78712, United States
| | - Tushti Shah
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street, C0400, Austin, Texas 78712, United States
| | - Rodrigo M Barba-Barba
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Colonia Lomas del Campestre, León, Gto. 37150, México
| | - Ramon Carriles
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Colonia Lomas del Campestre, León, Gto. 37150, México
| | - Alan Bernal
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Colonia Lomas del Campestre, León, Gto. 37150, México
| | - Bernardo S Mendoza
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Colonia Lomas del Campestre, León, Gto. 37150, México
| | - Brian A Korgel
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street, C0400, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas at Austin, 204 E. Dean Keeton Street, C2201, Austin, Texas 78712, United States
| | - Michael C Downer
- Department of Physics, University of Texas at Austin, 2515 Speedway, C1600, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Morselli G, Gradone A, Morandi V, Ceroni P. Light-harvesting antennae based on copper indium sulfide (CIS) quantum dots. NANOSCALE 2022; 14:3013-3019. [PMID: 35156987 DOI: 10.1039/d2nr00558a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Copper indium sulfide quantum dots (CIS QDs) and their core-shell analogues (CIS@ZnS QDs) were functionalized with pyrene chromophores via a dihydrolipoamide bifunctional binding moiety: UV excitation of the pyrene chromophores resulted in sensitized emission of the CIS core because of an efficient energy transfer process; the core-shell hybrid system exhibits a 50% increased brightness when excited at 345 nm.
Collapse
Affiliation(s)
- Giacomo Morselli
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126, Bologna, Italy.
| | - Alessandro Gradone
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126, Bologna, Italy.
- CNR-IMM Bologna Section, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Vittorio Morandi
- CNR-IMM Bologna Section, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Paola Ceroni
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
6
|
Villa M, Angeloni S, Bianco A, Gradone A, Morandi V, Ceroni P. Luminescent silicon nanocrystals appended with photoswitchable azobenzene units. NANOSCALE 2021; 13:12460-12465. [PMID: 34259700 DOI: 10.1039/d1nr02328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Confinement of multiple azobenzene chromophores covalently linked at the surface of luminescent silicon nanocrystals preserves the photoswitching behavior and modulates the nanocrystal polarity. Concomitantly, the thermal Z→E isomerization is strongly accelerated and the nanocrystal luminescence is reduced by an energy transfer process resulting in photosensitized E→Z isomerization.
Collapse
Affiliation(s)
- Marco Villa
- Department of Chemistry Ciamician, University of Bologna, Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Nano-Bio Interaction between Blood Plasma Proteins and Water-Soluble Silicon Quantum Dots with Enabled Cellular Uptake and Minimal Cytotoxicity. NANOMATERIALS 2020; 10:nano10112250. [PMID: 33202926 PMCID: PMC7696914 DOI: 10.3390/nano10112250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023]
Abstract
A better understanding of the compatibility of water-soluble semiconductor quantum dots (QDs) upon contact with the bloodstream is important for biological applications, including biomarkers working in the first therapeutic spectral window for deep tissue imaging. Herein, we investigated the conformational changes of blood plasma proteins during the interaction with near-infrared light-emitting nanoparticles, consisting of Pluronic F127 shells and cores comprised of assembled silicon QDs terminated with decane monolayers. Albumin and transferrin have high quenching constants and form a hard protein corona on the nanoparticle. In contrast, fibrinogen has low quenching constants and forms a soft protein corona. A circular dichroism (CD) spectrometric study investigates changes in the protein’s secondary and tertiary structures with incremental changes in the nanoparticle concentrations. As expected, the addition of nanoparticles causes the denaturation of the plasma proteins. However, it is noteworthy that the conformational recovery phenomena are observed for fibrinogen and transferrin, suggesting that the nanoparticle does not influence the ordered structure of proteins in the bloodstream. In addition, we observed enabled cellular uptake (NIH3T3 Fibroblasts) and minimal cytotoxicity using different cell lines (HeLa, A549, and NIH3T3). This study offers a basis to design QDs without altering the biomacromolecule’s original conformation with enabled cellular uptake with minimal cytotoxicity.
Collapse
|
8
|
Morselli G, Romano F, Ceroni P. Amine functionalised silicon nanocrystals with bright red and long-lived emission. Faraday Discuss 2020; 222:108-121. [PMID: 32101208 DOI: 10.1039/c9fd00089e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
When functionalised with amines, silicon nanocrystals (SiNCs) are known to have surface-state emission with loss of colour tunability, low quantum yield and short nanosecond lifetimes. These changes in optical properties are produced by direct amine bonding on the silicon surface. In this article, secondary amine functionalised SiNCs with bright, red (λmax = 750 nm) and long-lived emission (τ ca. 50 μs) are reported for the first time via a three-step synthetic approach. These SiNCs are colloidally stable in several polar solvents and can be further functionalised by reaction with carboxylic acid groups. We proved the feasibility of further functionalization with pyrene butyric acid: ca. 40 pyrene units per nanoparticle were attached via amide bond formation. The resulting hybrid system works as a light-harvesting antenna: excitation of pyrene units at 345 nm results in sensitised emission at 700 nm by the silicon core.
Collapse
Affiliation(s)
- Giacomo Morselli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, via Selmi 2, 40126, Bologna, Italy.
| | | | | |
Collapse
|
9
|
Romano F, Angeloni S, Morselli G, Mazzaro R, Morandi V, Shell JR, Cao X, Pogue BW, Ceroni P. Water-soluble silicon nanocrystals as NIR luminescent probes for time-gated biomedical imaging. NANOSCALE 2020; 12:7921-7926. [PMID: 32232243 DOI: 10.1039/d0nr00814a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Luminescent probes based on silicon nanocrystals (SiNCs) have many advantages for bioimaging compared to more conventional quantum dots: abundancy of silicon combined with its biocompatibility; tunability of the emission color of SiNCs in the red and NIR spectral region to gain deeper tissue penetration; long emission lifetimes of SiNCs (hundreds of μs) enabling time-gated acquisitions to avoid background noise caused by tissue autofluorescence and scattered excitation light. Here we report a new three-step synthesis, based on a low temperature thiol-ene click reaction that can afford SiNCs, colloidally stable in water, with preserved bright red and NIR photoluminescence (band maxima at 735 and 945 nm for nanocrystals with diameters of 4 and 5 nm, respectively) and long emission lifetimes. Their luminescence is insensitive to dioxygen and sensitive to pH changes in the physiological range, enabling pH sensing. In vivo studies demonstrated tumor accumulation, 48 hours clearance and a 3-fold improvement of the signal-to-noise ratio compared to steady-state imaging.
Collapse
Affiliation(s)
- Francesco Romano
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Beri D, Jakoby M, Howard IA, Busko D, Richards BS, Turshatov A. Improved photon absorption in dye-functionalized silicon nanocrystals synthesized via microwave-assisted hydrosilylation. Dalton Trans 2020; 49:2290-2299. [PMID: 32016196 DOI: 10.1039/c9dt04497c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we report a method to produce luminescent silicon nanocrystals (SiNc) that strongly absorb ultraviolet-visible light (300-550 nm) and emit in the near-infrared range (700-1000 nm) with a high photoluminescence quantum yield (PLQY). Using microwave-assisted hydrosilylation and employing reactive chromophores - such as ethenyl perylene, ethynyl perylene and ethylene-m-phenyl BODIPY - we are able to achieve a 10- and 3-fold enhancement of the absorption in the blue and green spectral range, respectively. The investigated dyes function both as passivating agents and highly efficient antenna, which absorb visible light and transfer the energy to SiNc with an efficiency of >95%. This enhanced absorption leads to a significant photoluminescence enhancement, up to ∼270% and ∼140% under excitation with blue and green light, respectively. Despite the gain in absolute brightness of the emission, we demonstrate that back energy transfer from the SiNc to the dyes leads to a decrease in the PLQY for dye-modified SiNc, as compared to unmodified SiNc. The synthesis of the SiNc-dye conjugates opens up new possibilities for applications of this abundant and non-toxic material in the field of solar energy harvesting, optical sensing and bioimaging via achieving strong NIR PL excited with visible light.
Collapse
Affiliation(s)
- Deski Beri
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Canham L. Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures. Faraday Discuss 2020; 222:10-81. [DOI: 10.1039/d0fd00018c] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights many spectroscopy-based studies and selected phenomenological studies of silicon-based nanostructures that provide insight into their likely PL mechanisms, and also covers six application areas.
Collapse
Affiliation(s)
- Leigh Canham
- School of Physics and Astronomy
- University of Birmingham
- Birmingham
- UK
| |
Collapse
|
12
|
Canola S, Mardegan L, Bergamini G, Villa M, Acocella A, Zangoli M, Ravotto L, Vinogradov SA, Di Maria F, Ceroni P, Negri F. One- and two-photon absorption properties of quadrupolar thiophene-based dyes with acceptors of varying strengths. Photochem Photobiol Sci 2019; 18:2180-2190. [PMID: 30816403 PMCID: PMC6713623 DOI: 10.1039/c9pp00006b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 01/12/2023]
Abstract
The one-photon (1P) and two-photon (2P) absorption properties of three quadrupolar dyes, featuring thiophene as a donor and acceptors of varying strengths, are determined by a combination of experimental and computational methods employing the density functional theory (DFT). The emission shifts in different solvents are well reproduced by time-dependent DFT calculations with the linear response and state specific approaches in the framework of the polarizable continuum model. The calculations show that the energies of both 1P- and 2P-active states decrease with an increase of the strength of the acceptor. The 2P absorption cross-sections predicted by the response theory are accounted for by considering just one intermediate state (S1) in the sum-over-states formulation. For the chromophore featuring the stronger acceptor, the energetic positions of the 1P- and 2P-active states prevent the exploitation of the theoretically predicted very high 2P activity due to the competing 1P absorption into the S1 state.
Collapse
Affiliation(s)
- Sofia Canola
- Università di Bologna, Dipartimento di Chimica 'G. Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy. and INSTM, UdR Bologna, Italy
| | - Lorenzo Mardegan
- Università di Bologna, Dipartimento di Chimica 'G. Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy.
| | - Giacomo Bergamini
- Università di Bologna, Dipartimento di Chimica 'G. Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy.
| | - Marco Villa
- Università di Bologna, Dipartimento di Chimica 'G. Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy.
| | - Angela Acocella
- Università di Bologna, Dipartimento di Chimica 'G. Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy.
| | - Mattia Zangoli
- MEDITEKNOLOGY srl, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Luca Ravotto
- University of Pennsylvania, Department of Biochemistry and Biophysics, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Sergei A Vinogradov
- University of Pennsylvania, Department of Biochemistry and Biophysics, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Francesca Di Maria
- CNR-NANOTEC - Instituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy.
| | - Paola Ceroni
- Università di Bologna, Dipartimento di Chimica 'G. Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy.
| | - Fabrizia Negri
- Università di Bologna, Dipartimento di Chimica 'G. Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy. and INSTM, UdR Bologna, Italy
| |
Collapse
|
13
|
Chinnathambi S, Shirahata N. Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:337-355. [PMID: 31068983 PMCID: PMC6493278 DOI: 10.1080/14686996.2019.1590731] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 05/08/2023]
Abstract
Luminescence probe has been broadly used for bio-imaging applications. Among them, near-infrared (NIR) quantum dots (QDs) are more attractive due to minimal tissue absorbance and larger penetration depth. Above said reasons allowed whole animal imaging without slice scan or dissection. This review describes in vitro and in vivo imaging of NIR QDs in the regions of 650-900 nm (NIR-I) and 1000-1450 nm (NIR-II). Also, we summarize the recent progress in bio-imaging and discuss the future trends of NIR QDs including group II-VI, IV-VI, I-VI, I-III-VI, III-V, and IV semiconductors.
Collapse
Affiliation(s)
- Shanmugavel Chinnathambi
- International Center for Young Scientists, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Naoto Shirahata
- International Center for Materials Nanoarchitectonics, NIMS, Tsukuba, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
- Department of Physics, Chuo University, Tokyo, Japan
| |
Collapse
|
14
|
McVey BFP, König D, Cheng X, O'Mara PB, Seal P, Tan X, Tahini HA, Smith SC, Gooding JJ, Tilley RD. Synthesis, optical properties and theoretical modelling of discrete emitting states in doped silicon nanocrystals for bioimaging. NANOSCALE 2018; 10:15600-15607. [PMID: 30090899 DOI: 10.1039/c8nr05071f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The creation of multiple emission pathways in quantum dots (QDs) is an exciting prospect with fundamental interest and optoelectronic potential. For the first time, we report multiple emission pathways in semiconductor nanocrystals (NCs) where the number of emission pathways desired is controlled by the number of dopant atoms per quantum dot. The origin of additional emission pathways is explained by interactions between dopant states and NC energy levels. Density functional theory (DFT) calculations of undoped 2.3 nm silicon (Si NCs) and the same NCs doped with 2 interstitial Cu atoms show good agreement to experiment. Such calculations provide valuable data to explain the changes in optical transitions due to the Cu dopant in terms of transition energies, quantum yield and dopant position as a function of dopants per NC. Changes in the optical properties of Si NCs induced by dopant concentration include extended excitation range and enhanced absorption coefficients, emission redshifts of up to 60 nm, and a two-fold increase in quantum yields up to 22%. The optical properties of doped NCs lead to significant bioimaging improvements illustrated by in vitro cell imaging, including redshifted excitation wavelengths away from natural autofluorescence and enhanced fluorescent signals.
Collapse
Affiliation(s)
- B F P McVey
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Croissant JG, Zink JI, Raehm L, Durand JO. Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment. Adv Healthc Mater 2018; 7:e1701248. [PMID: 29345434 DOI: 10.1002/adhm.201701248] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Coherent two-photon-excited (TPE) therapy in the near-infrared (NIR) provides safer cancer treatments than current therapies lacking spatial and temporal selectivities because it is characterized by a 3D spatial resolution of 1 µm3 and very low scattering. In this review, the principle of TPE and its significance in combination with organosilica nanoparticles (NPs) are introduced and then studies involving the design of pioneering TPE-NIR organosilica nanomaterials are discussed for bioimaging, drug delivery, and photodynamic therapy. Organosilica nanoparticles and their rich and well-established chemistry, tunable composition, porosity, size, and morphology provide ideal platforms for minimal side-effect therapies via TPE-NIR. Mesoporous silica and organosilica nanoparticles endowed with high surface areas can be functionalized to carry hydrophobic and biologically unstable two-photon absorbers for drug delivery and diagnosis. Currently, most light-actuated clinical therapeutic applications with NPs involve photodynamic therapy by singlet oxygen generation, but low photosensitizing efficiencies, tumor resistance, and lack of spatial resolution limit their applicability. On the contrary, higher photosensitizing yields, versatile therapies, and a unique spatial resolution are available with engineered two-photon-sensitive organosilica particles that selectively impact tumors while healthy tissues remain untouched. Patients suffering pathologies such as retinoblastoma, breast, and skin cancers will greatly benefit from TPE-NIR ultrasensitive diagnosis and therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE, Suite 103 Albuquerque NM 87106 USA
| | - Jeffrey I. Zink
- Department of Chemistry and Biochemistry; University of California Los Angeles; 405 Hilgard Avenue Los Angeles CA 90095 USA
| | - Laurence Raehm
- Institut Charles Gerhardt de Montpellier; UMR 5253 CNRS-UM-ENSCM; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Jean-Olivier Durand
- Institut Charles Gerhardt de Montpellier; UMR 5253 CNRS-UM-ENSCM; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| |
Collapse
|
16
|
Mazzaro R, Romano F, Ceroni P. Long-lived luminescence of silicon nanocrystals: from principles to applications. Phys Chem Chem Phys 2017; 19:26507-26526. [DOI: 10.1039/c7cp05208a] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Understanding parameters affecting the luminescence of silicon nanocrystals will guide the design of improved systems for a plethora of applications.
Collapse
Affiliation(s)
- Raffaello Mazzaro
- Department of Chemistry “Giacomo Ciamician”
- University of Bologna, and Interuniversity Center for the Chemical Conversion of Solar Energy (SolarChem)
- 40126 Bologna
- Italy
| | - Francesco Romano
- Department of Chemistry “Giacomo Ciamician”
- University of Bologna, and Interuniversity Center for the Chemical Conversion of Solar Energy (SolarChem)
- 40126 Bologna
- Italy
| | - Paola Ceroni
- Department of Chemistry “Giacomo Ciamician”
- University of Bologna, and Interuniversity Center for the Chemical Conversion of Solar Energy (SolarChem)
- 40126 Bologna
- Italy
| |
Collapse
|