1
|
Özcan BD, Zimmermann ML, Ren M, Bols M. New methods of modification of α-cyclodextrin. Org Biomol Chem 2024; 22:7092-7102. [PMID: 39171533 DOI: 10.1039/d4ob01109k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
While being some of the oldest supramolecular hosts, cyclodextrins remain very popular as molecular binders in materials, devices, artificial enzymes and more. The popularity is undoubtedly connected to the ready availability, carbohydrate biomass origin, biodegradability and water solubility of the cyclodextrins. Many of these applications require synthetic modification of the cyclodextrin - at the simplest the attachment of a linker - but also often attachment of several functional groups, lids, bridges etc. Here we review state of the art methods of modifying α-cyclodextrin, which include direct modications of unprotected α-cyclodextrin and protection/deprotection method to partially modified cyclodextrins.
Collapse
Affiliation(s)
- Bilge Deniz Özcan
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Morten Lang Zimmermann
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Mingzhe Ren
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Mikael Bols
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| |
Collapse
|
2
|
Qi Q, Huang S, Liu X, Aprahamian I. 1,2-BF 2 Shift and Photoisomerization Induced Multichromatic Response. J Am Chem Soc 2024; 146:6471-6475. [PMID: 38428039 DOI: 10.1021/jacs.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Adaptive materials that exhibit a multichromatic response as a function of applied stimulus are highly desirable, as they can result in applications ranging from smart surfaces to anticounterfeit devices. Here we report on such a system based on an intriguing thermal 1,2-BF2 shift that transforms a visible-light-activated azo-BF2 photoswitch into a BF2-hydrazone fluorophore (BODIHY) in both solution and the solid-state. Structure-property analysis, in conjunction with DFT calculations, reveals that the shift is catalyzed by the spatial proximity of an oxygen atom next to the BF2 group and that the activation originates from an electronic and not steric effect. Theoretical calculations also show that while the energy barrier for the trans → BODIHY transformation is accessible at room temperature (thermal half-life of 30 h), the cis → BODIHY transformation has a much higher barrier, which is why the 1,2-BF2 shift is not observed for the cis form. The photoswitching of the azo-BF2, in conjunction with the 1,2-BF2 shift, was then used in the multicolor modulation of a switch-containing cross-linked polydimethylsiloxane film using light and/or heat stimuli, elaborating the usefulness of the sophisticated reaction cascade that can be accessed from this simple system.
Collapse
Affiliation(s)
- Qingkai Qi
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Shiqing Huang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
3
|
Hegedüsová L, Blaise N, Pašteka LF, Budzák Š, Medveď M, Filo J, Mravec B, Slavov C, Wachtveitl J, Grabarz AM, Cigáň M. Enhancing the Potential of Fused Heterocycle-Based Triarylhydrazone Photoswitches. Chemistry 2024; 30:e202303509. [PMID: 38212244 DOI: 10.1002/chem.202303509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 01/13/2024]
Abstract
Triarylhydrazones represent an attractive class of photochromic compounds offering many interesting features including high molar absorptivity, good addressability, and extraordinary thermal stability. In addition, unlike most other hydrazone-based photoswitches, they effectively absorb light above 365 nm. However, previously prepared triaryhydrazones suffer from low quantum yields of the Z→E photoisomerization. Here, we have designed a new subclass of naphthoyl-benzothiazole hydrazones that balance the most beneficial features of previously reported naphthoyl-quinoline and benzoyl-pyridine triarylhydrazones. These preserve the attractive absorption characteristics, exhibit higher thermal stability of the metastable form than the former and enhance the rate of the Z→E photoisomerization compared to the later, as a result of the weakening of the intramolecular hydrogen bonding between the hydrazone hydrogen and the benzothiazole moiety. Introducing the benzothiazole motif extends the tunability of the photochromic behaviour of hydrazone-based switches.
Collapse
Affiliation(s)
- Lea Hegedüsová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| | - Nadine Blaise
- Institute of Physical and Theoretical Chemistry, Faculty of Biochemistry, Chemistry, Pharmacy, Goethe University, Frankfurt am Main, 60438, Germany
| | - Lukáš F Pašteka
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, 9747AG, The Netherlands
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| | - Šimon Budzák
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Banská Bystrica, 97400, Slovakia
| | - Miroslav Medveď
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Banská Bystrica, 97400, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, 77900, Czechia
| | - Juraj Filo
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| | - Bernard Mravec
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| | - Chavdar Slavov
- Department of Chemistry, University of South Florida, Tampa, FL 33620, Florida, US
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Faculty of Biochemistry, Chemistry, Pharmacy, Goethe University, Frankfurt am Main, 60438, Germany
| | - Anna M Grabarz
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, 50370, Poland
| | - Marek Cigáň
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| |
Collapse
|
4
|
Bonnet V, Clodic G, Sonnendecker C, Zimmermann W, Przybylski C. Ion mobility mass spectrometry enables the discrimination of positional isomers and the detection of conformers from cyclic oligosaccharides-metals supramolecular complexes. Carbohydr Polym 2023; 320:121205. [PMID: 37659808 DOI: 10.1016/j.carbpol.2023.121205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 09/04/2023]
Abstract
Cyclic oligosaccharides are well known to interact with various metals, able to form supramolecular complexes with distinct sizes and shapes. However, the presence of various isomers in a sample, including positional isomers and conformers, can significantly impact molecular recognition, encapsulation ability and chemical reactivity. Therefore, it is crucial to have tools for deep samples probing and correlation establishments. The emerging ion mobility mass spectrometry (IM-MS) has the advantages to be rapid and sensitive, but is still in its infancy for the investigation of supramolecular assemblies. In the herein study, it was demonstrated that IM-MS is suitable to discriminate several isomers of cyclodextrins (CD)-metals complexes, used as cyclic oligosaccharide models. In this sense, we investigated branched 6-O-α-glucosyl- or 6-O-α-maltosyl-β-cyclodextrins (G1-β-CD and G2-β-CD) and their purely cyclic isomers: CD8 (γ-CD) and CD9 (δ-CD). The corresponding collision cross section (CCS) values were deducted for the main positive singly and doubly charged species. Experimental CCS values were matched with models obtained from molecular modelling. The high mobility resolving power and resolution enabled discrimination of positional isomers, identification of various conformers and accurate relative content estimation. These results represent a milestone in the identification of carbohydrate conformers that cannot be easily reached by other approaches.
Collapse
Affiliation(s)
- Véronique Bonnet
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Gilles Clodic
- Sorbonne Université, Mass Spectrometry Sciences Sorbonne University, MS3U Platform, UFR 926, UFR 927, Paris, France
| | | | - Wolfgang Zimmermann
- Institute of Analytical Chemistry, Leipzig University, 04103 Leipzig, Germany
| | - Cédric Przybylski
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France; Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes 91000, France.
| |
Collapse
|
5
|
Sørensen J, Hansen EL, Larsen D, Elmquist MA, Buchleithner A, Florean L, Beeren SR. Light-controlled enzymatic synthesis of γ-CD using a recyclable azobenzene template. Chem Sci 2023; 14:7725-7732. [PMID: 37476725 PMCID: PMC10355107 DOI: 10.1039/d3sc01997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Cyclodextrins (CDs) are important molecular hosts for hydrophobic guests in water and extensively employed in the pharmaceutical, food and cosmetic industries to encapsulate drugs, flavours and aromas. Compared with α- and β-CD, the wide-scale use of γ-CD is currently limited due to costly production processes. We show how the yield of γ-CD in the enzymatic synthesis of CDs can be increased 5-fold by adding a tetra-ortho-isopropoxy-substituted azobenzene template irradiated at 625 nm (to obtain the cis-(Z)-isomer) to direct the synthesis. Following the enzymatic reaction, the template can then be readily recovered from the product mixture for use in subsequent reaction cycles. Heating induces thermal cis-(Z) to trans-(E) relaxation and consequent dissociation from γ-CD whereupon the template can then be precipitated by acidification. For this study we designed and synthesised a set of three water-soluble azobenzene templates with different ortho-substituents and characterised their photoswitching behaviour using UV/vis and NMR spectroscopy. The templates were tested in cyclodextrin glucanotransferase-mediated dynamic combinatorial libraries (DCLs) of cyclodextrins while irradiating at different wavelengths to control the cis/trans ratios. To rationalise the behaviour of the DCLs, NMR titrations were carried out to investigate the binding interactions between α-, β- and γ-CD and the cis and trans isomers of each template.
Collapse
Affiliation(s)
- Juliane Sørensen
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Emilie Ljungberg Hansen
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Dennis Larsen
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Mathias Albert Elmquist
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Andreas Buchleithner
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Luca Florean
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| | - Sophie R Beeren
- Department of Chemistry, Technical University of Denmark Kemitorvet Building 207 Kongens Lyngby 2800 Denmark
| |
Collapse
|
6
|
Thaggard GC, Leith GA, Sosnin D, Martin CR, Park KC, McBride MK, Lim J, Yarbrough BJ, Maldeni Kankanamalage BKP, Wilson GR, Hill AR, Smith MD, Garashchuk S, Greytak AB, Aprahamian I, Shustova NB. Confinement-Driven Photophysics in Hydrazone-Based Hierarchical Materials. Angew Chem Int Ed Engl 2023; 62:e202211776. [PMID: 36346406 DOI: 10.1002/anie.202211776] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Confinement-imposed photophysics was probed for novel stimuli-responsive hydrazone-based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution-like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady-state and time-resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone-based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Daniil Sosnin
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Margaret K McBride
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Austin R Hill
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
7
|
Liu Z, Zhou L, Zhang H, Han J. Cyclodextrin-pillar[ n]arene hybridized macrocyclic systems. Org Biomol Chem 2022; 20:4278-4288. [PMID: 35552579 DOI: 10.1039/d2ob00671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclodextrin (CD) and pillar[n]arene are significant macrocyclic host molecules in supramolecular chemistry, and have either similar or contrasting physicochemical properties, for example, both can provide capable cavities available for recognizing various favorite guest molecules, while they usually possess different solubility in aqueous solutions, and exhibit diverse chiral characteristics. To balance their similarity and differences inherited from each chemical structure and incorporate both advantages, the CD-pillar[n]arene hybrid macrocyclic system was recently developed. In this review, we will focus on the preparation and application of CD-pillar[n]arene hybrid macrocyclic systems. Both noncovalent interactions and covalent bonds were employed in the synthesis strategies of building the hybrid macrocyclic system, which was in the form of host-guest inclusion, self-assembly, conjugated molecules, and polymeric structures. Furthermore, the CD-pillar[n]arene hybrid macrocyclic system has been primarily applied for the removal of organic pollutants from water, induced chirality, as well as photocatalysis due to the integration of both cavities from CD and pillar[n]arene as hybrid hosts and chiral characteristics inherited from their chemical structures.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China.
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Samuelsen L, Larsen D, Schönbeck C, Beeren SR. pH-Responsive templates modulate the dynamic enzymatic synthesis of cyclodextrins. Chem Commun (Camb) 2022; 58:5152-5155. [PMID: 35383788 DOI: 10.1039/d1cc06554h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Product selection in the dynamic enzymatic synthesis of cyclodextrins can be controlled by changing the pH. Using cyclodextrin glucanotransferase to make labile the glycosidic linkages in cyclodextrins (CDs), we generate a dynamic combinatorial library of interconverting linear and cyclic α-1,4-glucans. Templates can be employed to favour the selective production of specific CDs and, herein, we show that by using ionisable templates, the synthesis of α-CD or β-CD can be favoured by simply changing the pH. Using 4-nitrophenol as the template, β-CD is the preferred product at low pH, while α-CD is the preferred product at high pH. Furthermore, a new methodology is described for the simulation of product distributions in dynamic combinatorial libraries with ionisable templates at any given pH.
Collapse
Affiliation(s)
- Lisa Samuelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.,Department of Chemistry, Technical University of Denmark, Kemitorvet building 207, DK-2800 Kongens Lyngby, Denmark.
| | - Dennis Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet building 207, DK-2800 Kongens Lyngby, Denmark.
| | - Christian Schönbeck
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Sophie R Beeren
- Department of Chemistry, Technical University of Denmark, Kemitorvet building 207, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
9
|
Larsen D, Ferreira M, Tilloy S, Monflier E, Beeren SR. Unnatural cyclodextrins can be accessed from enzyme-mediated dynamic combinatorial libraries. Chem Commun (Camb) 2022; 58:2287-2290. [PMID: 35080533 DOI: 10.1039/d1cc06452e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic systems of cyclodextrins (CDs) enabled by a native cyclodextrin glucanotransferase (CGTase) can incorporate unnatural glucopyranose-derived building blocks, expanding the applicability of enzyme-mediated dynamic combinatorial chemistry by using synthetically modified substrates. Starting dynamic combinatorial libraries from CDs with a single 6-modified glucopyranose results in a dynamic mixture of CDs containing several modified glucopyranoses. The relative concentrations of modified α, β or γ-CDs can be controlled by the addition of templates, providing a novel way to access modified CDs.
Collapse
Affiliation(s)
- Dennis Larsen
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| | - Michel Ferreira
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Lens 62300, France
| | - Sébastien Tilloy
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Lens 62300, France
| | - Eric Monflier
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Lens 62300, France
| | - Sophie R Beeren
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| |
Collapse
|
10
|
Harders P, Griebenow T, Businski A, Kaus AJ, Pietsch L, Näther C, McConnell A. The Dynamic Covalent Chemistry of Amidoboronates: Tuning the rac5/rac6 Ratio via the B‑N and B‐O Dynamic Covalent Bonds. Chempluschem 2022; 87:e202200022. [DOI: 10.1002/cplu.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Patrick Harders
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Thomas Griebenow
- Christian Albrechts Universität zu Kiel: Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Artjom Businski
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Anton J. Kaus
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Lorenz Pietsch
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Christian Näther
- Christian-Albrechts-Universitat zu Kiel Institute of Inorganic Chemistry GERMANY
| | - Anna McConnell
- Kiel University Institute of Organic Chemistry Otto-Hahn-Platz 4 24098 Kiel GERMANY
| |
Collapse
|
11
|
Jeong M, Park J, Seo Y, Lee KJ, Pramanik S, Ahn S, Kwon S. Hydrazone Photoswitches for Structural Modulation of Short Peptides. Chemistry 2021; 28:e202103972. [PMID: 34962683 DOI: 10.1002/chem.202103972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/11/2022]
Abstract
Molecules that undergo light-driven structural transformations constitute the core components in photoswitchable molecular systems and materials. Among various families of photoswitches, photochromic hydrazones have recently emerged as a novel class of photoswitches with superb properties, such as high photochemical conversion, spectral tunability, thermal stability, and fatigue resistance. Hydrazone photoswitches have been adopted in various adaptive materials at different length scales, however, their utilization for modulating biomolecules still has not been explored. Herein we present new hydrazone switches that can photomodulate the structures of short peptides. Systematic investigation on a set of hydrazone derivatives revealed that installation of the amide group does not significantly alter the photoswitching behaviors. Importantly, a hydrazone switch comprising an upper phenyl ring and a lower quinolinyl ring was effective for structural control of peptides. We anticipate that this work, as a new milestone in the research of hydrazone switches, will open a new avenue for structural and functional control of biomolecules.
Collapse
Affiliation(s)
- Myeongsu Jeong
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Jiyoon Park
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Yejin Seo
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Kwon Jung Lee
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Susnata Pramanik
- SRM Institute of Science and Technology, Department of Chemistry, INDIA
| | - Sangdoo Ahn
- Chung-Ang University - Seoul Campus: Chung-Ang University, Department of Chemistry, KOREA, REPUBLIC OF
| | - Sunbum Kwon
- Chung-Ang University, Chemistry, 84 Heukseok-ro, Bldg106 Rm401-2, 06974, Seoul, KOREA, REPUBLIC OF
| |
Collapse
|
12
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
13
|
Yang S, Harris JD, Lambai A, Jeliazkov LL, Mohanty G, Zeng H, Priimagi A, Aprahamian I. Multistage Reversible Tg Photomodulation and Hardening of Hydrazone-Containing Polymers. J Am Chem Soc 2021; 143:16348-16353. [PMID: 34590854 DOI: 10.1021/jacs.1c07504] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glass transition temperature (Tg) of a series of polyacrylate- and polymethacrylate-based polymers having bistable hydrazone photoswitches as pendants increases upon photoisomerization. The ensuing photohardening of the polymeric network was corroborated using nanoindentation measurements. The bistability of the switch allowed us to lock-in and sustain multiple Tg values in the same polymeric material as a function of the hydrazone switch's Z/E isomer ratio, even at elevated temperatures.
Collapse
Affiliation(s)
- Sirun Yang
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jared D Harris
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Aloshious Lambai
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, Tampere, 33720 Finland
| | - Laura L Jeliazkov
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Gaurav Mohanty
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, Tampere, 33720 Finland
| | - Hao Zeng
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, Tampere, 33720 Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, Tampere, 33720 Finland
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|