1
|
Raje S, Garhwal S, Młodzikowska-Pieńko K, Sheikh Mohammad T, Raphaeli R, Fridman N, Shimon LJW, Gershoni-Poranne R, de Ruiter G. N 2 Dissociation vs Reversible 1,2-Methyl Migration in PC NHCP Cobalt(I) Complexes in the Stereoselective Isomerization ( E/Z) of Allyl Ethers. JACS AU 2024; 4:4234-4248. [PMID: 39610742 PMCID: PMC11600169 DOI: 10.1021/jacsau.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 11/30/2024]
Abstract
With growing efforts pushing toward sustainable catalysis, using earth-abundant metals has become increasingly important. Here, we present the first examples of cobalt PCNHCP pincer complexes that demonstrate dual stereoselectivity for allyl ether isomerization. While the cationic cobalt complex [((PCNHCP)Co)2-μ-N2][BAr4 F]2 (3) mainly favors the Z-isomer of the enol ether, the corresponding methyl complex [(PCNHCP)CoMe] (4) mostly gives the E-isomer. The dichotomy in selectivity was investigated computationally, revealing important contributions from the substituents on the metal (N2 vs Me), including a 1,2-alkyl migration from cobalt to the N-heterocyclic carbene (NHC) of the methyl substituent, which is further explored in this report.
Collapse
Affiliation(s)
- Sakthi Raje
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Subhash Garhwal
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Katarzyna Młodzikowska-Pieńko
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Tofayel Sheikh Mohammad
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Ron Raphaeli
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Natalia Fridman
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Renana Gershoni-Poranne
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Graham de Ruiter
- Schulich
Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
2
|
Yu L, Ogawa H, Li S, Lam Cheung T, Liu W, Yan D, Matsuda Y, Kobayashi Y, Guo Z, Ikeda K, Hamlin TA, Yamazaki K, Qian PY, Nakamura H. Concise Synthesis of Cyctetryptomycin A and B Enabled by Zr-Catalyzed Dimerization. Angew Chem Int Ed Engl 2024:e202414295. [PMID: 39216012 DOI: 10.1002/anie.202414295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
A concise synthetic strategy utilizing a Zr catalyst for the construction of cyctetryptomycin A and B is reported. Cyctetryptomycin A and B are recently isolated, complex tetrameric natural products for which total synthesis has not been previously reported. This study presents a practical approach for the construction of two consecutive quaternary carbon centers with a Zr catalyst. Furthermore, the first total synthesis of cyctetryptomycin A and B was achieved by this Zr-catalyzed radical coupling. The radical dimerization reaction mediated by the Zr catalyst required 1,2-bis(diphenylphosphino)ethane (dppe) as an indispensable additive. Through both experimental and theoretical investigations into the mechanism of this Zr-catalyzed reaction, the specific role of dppe was elucidated. In addition, the synthetic approach was extended to enable the practical synthesis of other dimeric natural products, including tetratryptomycin A, dibrevianamide F, and ditryptophenaline. Finally, the synthetic mechanism of cyctetryptomycin A and B, through the oxidative macrocyclization of tetratryptomycin A by CttpC, was newly elucidated by both experimental and docking simulations.
Collapse
Affiliation(s)
- Longhui Yu
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hiroshige Ogawa
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shangzhao Li
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Tsoh Lam Cheung
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Wenchao Liu
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Dexiu Yan
- City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yusuke Kobayashi
- Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Zhihong Guo
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Kotaro Ikeda
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Trevor A Hamlin
- Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Ken Yamazaki
- Division of Applied Chemistry, Okayama University Tsushimanaka, Okayama, 700-8530, Japan
| | - Pei-Yuan Qian
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Hugh Nakamura
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Guo P, Song X, Huang B, Zhang R, Zhao J. Photoinduced Low-Valent Zirconium Catalysis for Cross-Electrophile Coupling of Ethers. Angew Chem Int Ed Engl 2024; 63:e202405449. [PMID: 38781085 DOI: 10.1002/anie.202405449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Accessing versatile C(sp3)-C(sp3) bond through the cross-electrophile coupling of two distinct etheric C-O bonds is crucial in organic synthesis but remains barely explored. Herein, we report an innovative photoinduced low-valent zirconocene catalysis enabling the reductive coupling of ethers with high activity and cross-selectivity. Mechanistic investigation suggests that photoexcitation of low-valent zirconocene facilitates the C(sp3)-O bond scission of benzylic ethers, leading to the benzylic radicals intermediate via a single-electron reduction pathway. The subsequent recombination of this benzylic radical with the Zr center followed by carbomagnesiation generates benzylic Grignard reagents for downstream coupling with aliphatic ethers through an SN2-like mechanism. In application, a wide range of ethers readily in situ derived from aldehydes and ketones becomes feasible with high functional group compatibility as well as excellent cross-selectivity.
Collapse
Affiliation(s)
- Ping Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuedong Song
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Banruo Huang
- Department of Chemistry, University of California, Berkeley, California, 94720, United States
| | - Ruixue Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Dong B, Zhao F, Lv WX, Liu YG, Wei D, Wu J, Chi YR. Regio- and stereoselective access to highly substituted vinylphosphine oxides via metal-free electrophilic phosphonoiodination of alkynes. Nat Commun 2024; 15:5385. [PMID: 38918418 PMCID: PMC11199708 DOI: 10.1038/s41467-024-49640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
In general, the P-centered ring-opening of quaternary phosphirenium salts (QPrS) predominantly leads to hydrophosphorylated products, while the C-centered ring-opening is primarily confined to intramolecular nucleophilic reactions, resulting in the formation of phosphorus-containing cyclization products instead of difunctionalized products generated through intermolecular nucleophilic processes. Here, through the promotion of ring-opening of three-member rings by iodine anions and the quenching of electronegative carbon atoms by iodine cations, we successfully synthesize β-functionalized vinylphosphine oxides by the P-addition of QPrS intermediates generated in situ. Multiple β-iodo-substituted vinylphosphine oxides can be obtained with exceptional regio- and stereo-selectivity by reacting secondary phosphine oxides with unactivated alkynes. In addition, a variety of β-functionalized vinylphosphine oxides converted from C-I bonds, especially the rapid construction of benzo[b]phospholes oxides, demonstrates the significance of this strategy.
Collapse
Affiliation(s)
- Bingbing Dong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Fengqian Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wen-Xin Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ying-Guo Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Junliang Wu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
5
|
Suga T, Takada R, Sakamoto M, Ukaji Y. Directing-Group-Assisted Non-Strained Ether C-O Bond Homolysis Mediated by Low-Valent Titanium. Org Lett 2024; 26:2315-2320. [PMID: 38456776 DOI: 10.1021/acs.orglett.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Ether C-O bonds are typical constituents of organic molecules that are seldom regarded as reactive functional groups except when highly strained. With the assistance of appropriate directing groups, low-valent titanium was found to homolytically cleave non-strained C-O bonds. In particular, a newly designed catechol monoether directing group rendered a route toward the activation of non-benzylic C(sp3)-O bonds. This method has been applied to conventional radical addition reactions to alkenes.
Collapse
Affiliation(s)
- Takuya Suga
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,, Kakuma, Kanazawa, 920-1192, Japan
| | - Ryusei Takada
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,, Kakuma, Kanazawa, 920-1192, Japan
| | - Masaya Sakamoto
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,, Kakuma, Kanazawa, 920-1192, Japan
| | - Yutaka Ukaji
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,, Kakuma, Kanazawa, 920-1192, Japan
| |
Collapse
|
6
|
Dinodia M. A Recent Update on the Visible Light-promoted Organic Transformations - A Mini-review. Curr Org Synth 2024; 21:965-975. [PMID: 37641990 DOI: 10.2174/1570179421666230828103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Visible light-induced reactions are a rapidly developing and powerful technique to promote organic transformations. They provide green and sustainable chemistry and have recently received increasing attention from chemists due to their wide application in organic synthesis. Light energy is eco-friendly, cheap, green, and inexhaustible with potential industrial and pharmaceutical applications. In this review, the most recent advances in visible light-induced reactions (2021-till date) have been highlighted.
Collapse
Affiliation(s)
- Monica Dinodia
- Department of Chemistry, Hansraj College, Delhi University, Delhi, 110007, India
| |
Collapse
|
7
|
Mori Y, Hayashi M, Sato R, Tai K, Nagase T. Development of Photoredox Cross-Electrophile Coupling of Strained Heterocycles with Aryl Bromides Using High-Throughput Experimentation for Library Construction. Org Lett 2023. [PMID: 37487482 DOI: 10.1021/acs.orglett.3c01821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Microscale high-throughput experimentation was used to develop a photoredox-assisted reductive cross-coupling reaction of aryl halides with strained aliphatic heterocycles facilitated via a ring-opening reaction. This methodology was found to be applicable to medicinally relevant substrates including Boc-protected strained aliphatic heterocycles and (hetero)aryl bromides and was used for compound library construction via parallel medicinal chemistry. Furthermore, the coupling reactions were shown to be scalable to the gram scale by continuous flow reaction. A possible reaction mechanism is also discussed.
Collapse
Affiliation(s)
- Yukiko Mori
- Department of Medicinal Chemistry, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Mutsuyo Hayashi
- Department of Medicinal Chemistry, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Ryuma Sato
- Department of Medicinal Chemistry, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Kuninori Tai
- Department of Medicinal Chemistry, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Tsuyoshi Nagase
- Department of Medicinal Chemistry, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| |
Collapse
|
8
|
Sahoo J, Panda J, Giri S, Sahoo G. Concept-Driven Chemoselective O/N-Derivatization of Prolinol: A Bee-Line Approach to Access Organocatalysts. J Org Chem 2023. [PMID: 37402179 DOI: 10.1021/acs.joc.3c00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
An investigation into the sensitivity of reaction conditions to a highly utilized protocol has been reported, wherein the mono-Boc functionalization of prolinol could be controlled for the exclusive synthesis of either N-Boc, O-Boc, or oxazolidinone derivatives. Mechanistic investigation revealed that the elementary steps could possibly be controlled by (a) a requisite base to recognize the differently acidic sites (NH and OH) for the formation of the conjugate base, which reacts with the electrophile, and (b) the difference in nucleophilicity of the conjugate basic sites. Herein, a successful chemoselective functionalization of the nucleophilic sites of prolinol by employing a suitable base is reported. This has been achieved by exploiting the relative acidity difference of NH and OH along with the reversed nucleophilicity of the corresponding conjugate bases N- and O-. This protocol has also been used for the synthesis of several O-functionalized prolinol derived organocatalysts, few of which have been newly reported.
Collapse
Affiliation(s)
- Jigyansa Sahoo
- Organocatalysis and Synthesis Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Jeetendra Panda
- Organocatalysis and Synthesis Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Santanab Giri
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia 721657, West Bengal, India
| | - Gokarneswar Sahoo
- Organocatalysis and Synthesis Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| |
Collapse
|
9
|
Funk BE, Pauze M, Lu YC, Moser AJ, Wolf G, West JG. Vitamin B 12 and hydrogen atom transfer cooperative catalysis as a hydride nucleophile mimic in epoxide ring opening. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101372. [PMID: 37235063 PMCID: PMC10210593 DOI: 10.1016/j.xcrp.2023.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Epoxide ring-opening reactions have long been utilized to furnish alcohol products that are valuable in many subfields of chemistry. While many epoxide-opening reactions are known, the hydrogenative opening of epoxides via ionic means remains challenging because of harsh conditions and reactive hydride nucleophiles. Recent progress has shown that radical chemistry can achieve hydrogenative epoxide ring opening under relatively mild conditions; however, these methods invariably require oxophilic metal catalysts and sensitive reagents. In response to these challenges, we report a new approach to epoxide ring-opening hydrogenation using bio-inspired Earth-abundant vitamin B12 and thiol-centric hydrogen atom transfer (HAT) co-catalysis to produce Markovnikov alcohols under visible light irradiation. This powerful reaction system exhibits a broad substrate scope, including a number of electrophilic and reductively labile functionalities that would otherwise be susceptible to reduction or cleavage by hydride nucleophiles, and preliminary mechanistic experiments are consistent with a radical process.
Collapse
Affiliation(s)
- Brian E. Funk
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Martin Pauze
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Yen-Chu Lu
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Austin J. Moser
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Gemma Wolf
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Julian G. West
- Department of Chemistry, Rice University, Houston, TX 77030, USA
- Lead contact
| |
Collapse
|
10
|
Visible Light Induced C-H/N-H and C-X Bonds Reactions. REACTIONS 2023. [DOI: 10.3390/reactions4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Herein, we report efficient visible light-induced photoredox reactions of C–H/N–H and C–X Bonds. These methods have provided access to varied portfolio of synthetically important γ-ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted benzimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-arylquinolines in good yields and under mild conditions. Moreover, we have successfully discussed the construction through visible light-induction by an intermolecular radical addition, dearomative cyclization, aryl migration and desulfonylation. Similarly, we also spotlight the visible light-catalyzed aerobic C–N bond activation from well-known building blocks through cyclization, elimination and aromatization. The potential use of a wide portfolio of simple ketones and available primary amines has made this transformation very attractive.
Collapse
|
11
|
Robust salen-typed Ce-MOFs supported Fe(III) catalyst fabricated by metalloligand strategy for catalytic epoxides with alcohols. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Qin Q, Wang D, Shao Z, Zhang Y, Zhang Q, Li X, Huang C, Mi L. Sequentially Regulating the Structural Transformation of Copper Metal-Organic Frameworks (Cu-MOFs) for Controlling Site-Selective Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36845-36854. [PMID: 35938901 DOI: 10.1021/acsami.2c09290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Regulating atomically precise sites in catalysts to achieve site-selective reactions is remarkable but challenging. In this work, a convenient and facile solid-gas/liquid reaction strategy was used to construct controllable active sites in metal-organic frameworks (MOFs) to guide an orientation site-selective reaction. A flexible CuI-MOF-1 with dynamics originating from an anionic and tailorable framework could undergo a reversible structural transformation to engineer a topologically equivalent mixed-valent CuICuII-MOF-2 via a solid-gas/liquid oxidation/reduction process. More importantly, CuI-MOF-1 and CuICuII-MOF-2 could further execute the solid-gas/liquid reaction under ammonia vapor/solution to generate CuII-MOF-3. Furthermore, the transformation from CuI-MOF-1 to CuICuII-MOF-2 and CuII-MOF-3 served as controllable catalysts to facilitate site-selective reactions to realize direct C-N bond arylations. The results demonstrated that CuI-MOF-1 and CuII-MOF-3 possessed well-defined platforms with uniformly and accurately active sites to attain a "turn-on/off" process via different reaction routes, providing the desired site-selective ring-opening products.
Collapse
Affiliation(s)
- Qi Qin
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Di Wang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Zhichao Shao
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yingying Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Qiang Zhang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Xinyue Li
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Chao Huang
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Liwei Mi
- Center for Advanced Materials Research and Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|