1
|
Masuda G, Akuta S, Wang W, Suzuki M, Honda Y, Wang Q. Study on Fast Liquefaction and Characterization of Produced Polyurethane Foam Materials from Moso Bamboo. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3751. [PMID: 39124415 PMCID: PMC11312812 DOI: 10.3390/ma17153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Although bamboo is widely distributed in Japan, its applications are very limited due to its poor combustion efficiency for fuel. In recent years, the expansion of abandoned bamboo forests has become a social issue. In this research, the possibility of a liquefaction process with fast and efficient liquefaction conditions using moso bamboo as raw material was examined. Adding 20 wt% ethylene carbonates to the conventional polyethylene glycol/glycerol mixed solvent system, the liquefaction time was successfully shortened from 120 to 60 min. At the same time, the amount of sulfuric acid used as a catalyst was reduced from 3 wt% to 2 wt%. Furthermore, polyurethane foam was prepared from the liquefied product under these conditions, and its physical properties were evaluated. In addition, the filler effects of rice husk biochar and moso bamboo fine meals for the polyurethane foams were characterized by using scanning electron microscopy (SEM) and thermogravimetry and differential thermal analysis (TG-DTA), and the water absorption and physical density were measured. As a result, the water absorption rate of bamboo fine meal-added foam and the thermal stability of rice husk biochar-added foam were improved. These results suggested that moso bamboo meals were made more hydrophilic, and the carbon content of rice husk biochar was increased.
Collapse
Affiliation(s)
- Go Masuda
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (G.M.); (S.A.); (W.W.); (M.S.)
| | - Satoshi Akuta
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (G.M.); (S.A.); (W.W.); (M.S.)
| | - Weiqian Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (G.M.); (S.A.); (W.W.); (M.S.)
| | - Miho Suzuki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (G.M.); (S.A.); (W.W.); (M.S.)
| | - Yu Honda
- LignoMateria Corporation, Akasaka Hukugen Building 1F, Akasaka 2Chome 15-16, Minato, Tokyo 107-0052, Japan;
| | - Qingyue Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; (G.M.); (S.A.); (W.W.); (M.S.)
| |
Collapse
|
2
|
Bontaş MG, Diacon A, Călinescu I, Rusen E. Lignocellulose Biomass Liquefaction: Process and Applications Development as Polyurethane Foams. Polymers (Basel) 2023; 15:polym15030563. [PMID: 36771865 PMCID: PMC9919571 DOI: 10.3390/polym15030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
One of the main strategies for sustainable human society progress is the development of efficient strategies to limit waste production and maximize renewable resource utilization. In this context, this review highlights the opportunity to transform vegetable biomass residues into valuable commercial products. Biomass conversion entails the depolymerization of lignocellulosic biomass towards biopolyols and the synthesis and characterization of the valuable products obtained by using them. The influence of the reaction parameters in both acid and basic catalysis is highlighted, respectively the influence of microwaves on the liquefaction reaction versus conventional heating. Following the depolymerization reaction, polyols are employed to produce polyurethane foams. As a special characteristic, the addition of flame-retardant properties was emphasized. Another interesting topic is the biodegradability of these products, considering the negative consequences that waste accumulation has on the environment.
Collapse
Affiliation(s)
- Marius Gabriel Bontaş
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica Bucharest, Gh. Polizu Street, 011061 Bucharest, Romania
- S.C. Protect Chemical S.R.L., 6 Cercetătorilor Street, 042024 Bucharest, Romania
| | - Aurel Diacon
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica Bucharest, Gh. Polizu Street, 011061 Bucharest, Romania
- Military Technical Academy “Ferdinand I”, 39-49 George Coșbuc Boulevard, 050141 Bucharest, Romania
| | - Ioan Călinescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica Bucharest, Gh. Polizu Street, 011061 Bucharest, Romania
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica Bucharest, Gh. Polizu Street, 011061 Bucharest, Romania
- Correspondence:
| |
Collapse
|
3
|
Dai S, Liu L, He H, Yang B, Wu D, Zhao Y, Niu D. Highly-efficient molten NaOH-KOH for organochlorine destruction: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 217:114815. [PMID: 36400224 DOI: 10.1016/j.envres.2022.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Molten salt has been increasingly acknowledged to be useful in the destruction of chlorine-containing organic wastes (COWs), e.g., organochlorine. However, the operational temperatures are usually high, and local structure and thermodynamic property of the molten salt remain largely unclear. In this study, novel molten NaOH-KOH is developed for organochlorine destruction, and its eutectic point can be lowered to 453 K with 1:1 mol ratio of NaOH to KOH. Further experiment shows that this molten NaOH-KOH is highly-efficient towards the destructions of both trichlorobenzene and dichlorophenol, acquiring the final dechlorination efficiencies as 88.2% and 94.1%, respectively. The organochlorine destruction and chloride salt enrichment are verified by fourier-transform infrared spectrometer. Molten NaOH-KOH not only eliminates the C-Cl and CC bonds, but also traps generated CO2, other acidic gases, and possibly particulate matters as a result of the high surface area and high viscosity. This makes it possibly advantageous over incineration for organic waste destruction for carbon neutrality. To sufficiently reveal the inherent mechanism for the temperature dependent performance, molecular dynamics simulation is further adopted. Results show that the radial distance between ions increases with temperature, causing larger molar volume and lower resistance to shear deformation. Moreover, thermal expansion coefficient, specific heat capacity, and ion self-diffusion coefficient of the molten NaOH-KOH are found to increase linearly with temperature. All these microscopic alterations contribute to the organochlorine destruction. This study benefits to develop highly-efficient molten system for COWs treatment via a low-carbon approach.
Collapse
Affiliation(s)
- Shijin Dai
- Baoan District City Appearance and Environment Comprehensive Management Service Center, Shenzhen, 518101, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Libing Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hongping He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Deli Wu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Youcai Zhao
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Dongjie Niu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
4
|
Yu Z, Xiao Y, Tian H, Liu S, Zeng J, Luo X. Bagasse as functional fillers to improve and control biodegradability of soy oil-based rigid polyurethane foams. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0349-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Zhang J, Hori N, Takemura A. Optimization of preparation process to produce polyurethane foam made by oilseed rape straw based polyol. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Gama NV, Ferreira A, Barros-Timmons A. Polyurethane Foams: Past, Present, and Future. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1841. [PMID: 30262722 PMCID: PMC6213201 DOI: 10.3390/ma11101841] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 11/16/2022]
Abstract
Polymeric foams can be found virtually everywhere due to their advantageous properties compared with counterparts materials. Possibly the most important class of polymeric foams are polyurethane foams (PUFs), as their low density and thermal conductivity combined with their interesting mechanical properties make them excellent thermal and sound insulators, as well as structural and comfort materials. Despite the broad range of applications, the production of PUFs is still highly petroleum-dependent, so this industry must adapt to ever more strict regulations and rigorous consumers. In that sense, the well-established raw materials and process technologies can face a turning point in the near future, due to the need of using renewable raw materials and new process technologies, such as three-dimensional (3D) printing. In this work, the fundamental aspects of the production of PUFs are reviewed, the new challenges that the PUFs industry are expected to confront regarding process methodologies in the near future are outlined, and some alternatives are also presented. Then, the strategies for the improvement of PUFs sustainability, including recycling, and the enhancement of their properties are discussed.
Collapse
Affiliation(s)
- Nuno V Gama
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro⁻Campus Santiago, 3810-193 Aveiro, Portugal.
| | - Artur Ferreira
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro⁻Campus Santiago, 3810-193 Aveiro, Portugal.
- Escola Superior de Tecnologia e Gestão de Águeda-Rua Comandante Pinho e Freitas, No. 28, 3750-127 Águeda, Portugal.
| | - Ana Barros-Timmons
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro⁻Campus Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application. ADVANCES IN BIOENERGY 2018. [DOI: 10.1016/bs.aibe.2018.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Polyols from Microwave Liquefied Bagasse and Its Application to Rigid Polyurethane Foam. MATERIALS 2015; 8:8496-8509. [PMID: 28793725 PMCID: PMC5458812 DOI: 10.3390/ma8125472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022]
Abstract
Bagasse flour (BF) was liquefied using bi-component polyhydric alcohol (PA) as a solvent and phosphoric acid as a catalyst in a microwave reactor. The effect of BF to solvent ratio and reaction temperatures on the liquefaction extent and characteristics of liquefied products were evaluated. The results revealed that almost 75% of the raw bagasse was converted into liquid products within 9 min at 150 °C with a BF to solvent ratio of 1/4. The hydroxyl and acid values of the liquefied bagasse (LB) varied with the liquefied conditions. High reaction temperature combining with low BF to solvent ratio resulted in a low hydroxyl number for the LB. The molecular weight and polydispersity of the LB from reactions of 150 °C was lower compared to that from 125 °C. Rigid polyurethane (PU) foams were prepared from LB and methylene diphenyl diisocyanate (MDI), and the structural, mechanical and thermal properties of the PU foam were evaluated. The PU foams prepared using the LB from high reaction temperature showed better physical and mechanical performance in comparison to those from low reaction temperature. The amount of PA in the LB has the ability of increasing thermal stability of LB-PU foams. The results in this study may provide fundamental information on integrated utilizations of sugarcane bagasse via microwave liquefaction process.
Collapse
|
9
|
Hu S, Luo X, Li Y. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. CHEMSUSCHEM 2014; 7:66-72. [PMID: 24357542 DOI: 10.1002/cssc.201300760] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Indexed: 06/03/2023]
Abstract
Polyurethanes (PUs), produced from the condensation polymerizations between polyols and isocyanates, are one of the most versatile polymer families. Currently, both polyols and isocyanates are largely petroleum derived. Recently, there have been extensive research interests in developing bio-based polyols and PUs from renewable resources. As the world's most abundant renewable biomass, lignocellulosic biomass is rich in hydroxyl groups and has potential as a feedstock to produce bio-based polyols and PUs. Lignocellulosic biomass can be converted to liquid polyols for PU applications through acid- or base-catalyzed atmospheric liquefaction processes using polyhydric alcohols as liquefaction solvents. Biomass liquefaction-derived polyols can be used to prepare various PU products, such as foams, films and adhesives. The properties of biomass liquefaction-derived polyols and PUs depend on various factors, such as feedstock characteristics, liquefaction conditions, and PU formulations.
Collapse
Affiliation(s)
- Shengjun Hu
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave, Wooster, OH, 44691-4096 (USA), Fax: (+1) 330-263-3670
| | | | | |
Collapse
|
10
|
Wang T, Yin J, Zheng Z, Mao Z. Optimization of reaction conditions for polyurethane foam synthesis with liquefied corn stalk by response surface methodology. J Appl Polym Sci 2012. [DOI: 10.1002/app.36917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Wang T, Yin J, Zheng Z. Effects of chemical inhomogeneity of corn stalk on solvolysis liquefaction. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Wang TP, Zheng ZM, Mao ZH. Characterization of polyurethane foams prepared from non-pretreated liquefied corn stover with PAPI. CAN J CHEM ENG 2011. [DOI: 10.1002/cjce.20381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Gao LL, Liu YH, Lei H, Peng H, Ruan R. Preparation of semirigid polyurethane foam with liquefied bamboo residues. J Appl Polym Sci 2010. [DOI: 10.1002/app.31556] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|