1
|
Papachristou I, Nazarova N, Wüstner R, Lina R, Frey W, Silve A. Biphasic lipid extraction from microalgae after PEF-treatment reduces the energy demand of the downstream process. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:12. [PMID: 39875923 PMCID: PMC11776281 DOI: 10.1186/s13068-025-02608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND The gradual extrusion of water-soluble intracellular components (such as proteins) from microalgae after pulsed electric field (PEF) treatment is a well-documented phenomenon. This could be utilized in biorefinery applications with lipid extraction taking place after such an 'incubation' period, i.e., a post-PEF-treatment step during which the biomass is left undisturbed before any further processing. The goal of this work was to further explore how this incubation could improve lipid extraction. RESULTS Experiments were conducted on wet, freshly harvested Auxenochlorella protothecoides, treated with 0.25 or 1.5 MJ/kgDW and incubated for 24 h. Lipid extraction took place with a monophasic ethanol:hexane:water, 1:0.41:0.04 vol/vol/vol mixture with a 75.6 mL solvent per 1 g of dry biomass ratio. The kinetics of the extraction were studied with samples taken between 10 and 1080 min from fresh and incubated biomass. The yields at 10 min were significantly increased with incubation compared to without (31.2% dry weight compared to 1.81%, respectively). The experimental data were fitted with the Patricelli model where extraction occurs in two steps, a rapid washing of immediate available lipids and a slower diffusion one. During Nile-Red staining of microalgae and microscopy imaging, a shift of emission from both GFP and RFP channels to mostly RFP was observed indicating an increase in the polarity of the environment of Nile-Red. These led to an adaption of a biphasic ethanol:hexane:water 1:6:0.4 vol/vol/vol solvent with 37 mL solvent per 1 g of dry biomass ratio which while ineffective on fresh biomass, achieved a 27% dry weight yield from incubated microalgae. The extraction efficiency in the biphasic route was lower compared to the monophasic (i.e., 69% and 95%, respectively). It was compensated however, by the significant solvent reduction (37 mL to 75.6 mL respectively), in particular the ethanol minimization. For the extraction of 1 L lipids, it was estimated that the energy consumption ratio for the biphasic process was 1.6 compared to 9.9 for monophasic, making clearly the most preferential one. CONCLUSIONS This biphasic approach significantly reduces solvent consumption and the respective energy requirement for solvent recovery. Incubation thus could majorly improve the commercialization prospects of the process.
Collapse
Affiliation(s)
- Ioannis Papachristou
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| | - Natalja Nazarova
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Rüdiger Wüstner
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Robin Lina
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Frey
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Aude Silve
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Vieira DRR, da Silva VR, Spier MR. Extraction of high methoxyl pectin from unripe waste Ponkan mandarine (Citrus reticulata Blanco cv. Ponkan) with an eco-friendly solvent. Int J Biol Macromol 2024; 258:128663. [PMID: 38092102 DOI: 10.1016/j.ijbiomac.2023.128663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The aqueous batch extraction of pectin from unripe Ponkan mandarin was evaluated for potential application in the food industry. A small central composite design with 4 variables (temperature, volume to mass ratio, pH, and mean particle size) and 3 levels was applied for pectin extraction optimization. Also, the kinetic of the pectin yield extraction was investigated at temperatures 70-90 °C, stirring rate of 100-700 rpm, ultrasound pretreatment system, and modeling using four mathematical models. The pectin extraction process was evaluated by yield of pectin and esterification degree. FTIR, TGA, and DTA were performed to evaluate the quality of pectin obtained. The small central composite design demonstrated that temperature and volume to mass ratio were significant variables, and the highest yield of pectin extraction was 11.62 % obtained at temperature and volume to molar ratio of 81.9 °C and 33.9 v/w %, respectively. Besides, the esterification degree showed higher than 70 % for all extraction conditions, suggesting high methoxyl pectin. The kinetics showed the stirring rate and the ultrasound pretreatment did not cause any significant alteration, while high temperatures proved to be beneficial to the rate and the yield of the pectin extraction. The best fit was provided by Fick's law, suggesting the extraction process is limited by internal mass transfer. FTIR showed the functional groups expected for pectin, and TGA and DTA indicated that the pectin obtained is proper for most food products, as only above 200 °C the pectin should degrade.
Collapse
Affiliation(s)
- Daniel Ravazzani Ribeiro Vieira
- Federal University of Paraná, Technology Sector, Chemical Engineering Department, Post Graduate Program in Food Engineering, P.O. Box 19011, 81531-980 Curitiba, Paraná, Brazil.
| | - Vitor Renan da Silva
- Federal University of Paraná, Technology Sector, Chemical Engineering Department, Post Graduate Program in Food Engineering, P.O. Box 19011, 81531-980 Curitiba, Paraná, Brazil
| | - Michele Rigon Spier
- Federal University of Paraná, Technology Sector, Chemical Engineering Department, Post Graduate Program in Food Engineering, P.O. Box 19011, 81531-980 Curitiba, Paraná, Brazil
| |
Collapse
|
3
|
Giri S, Kshirod Kumar Dash, Bhagya Raj G, Kovács B, Ayaz Mukarram S. Ultrasound assisted phytochemical extraction of persimmon fruit peel: Integrating ANN modeling and genetic algorithm optimization. ULTRASONICS SONOCHEMISTRY 2024; 102:106759. [PMID: 38211494 PMCID: PMC10825330 DOI: 10.1016/j.ultsonch.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
In the present study, ultrasound assisted extraction (UAE) of phytochemicals from persimmon fruit peel (PFP) was modeled using an artificial neural network (ANN) and optimized by integrating with genetic algorithm (GA). The range of process parameters selected for conducting the experiments was ultrasonication power (XU) 150---350 W, extraction temperatures (XT) 30---70 °C, solid to solvent ratio (XS) 1:15---1:35 g/ml, and ethanol concentration (XC) 40---80 %. The range of responses total phenolic content (YP), antioxidant activity (YA), total beta carotenoid (YB) and total flavonoid content (YF) at various independent variables combinations were found to be 7.72---24.62 mg GAE/g d.w., 51.44---85.58 %DPPH inhibition, 24.78---56.56 µg/g d.w. and 0.29---1.97 mg QE/g d.w. respectively. The modelling utilised an ANN architecture with a configuration of 4-12-4. The training process employed the Levenberg-Marquardt method, whereas the activation function chosen for the layers was the log sigmoid. The optimum condition predicted by the hybrid ANN-GA model for the independent variables, XU, XT, XS and XC was found to be 230.18 W, 50.66 °C, 28.27 g/ml, and 62.75 % respectively. The extraction process was carried out for 25 min, with 5-minute intervals, at various temperatures between 30 and 60 °C, to investigate the kinetic and thermodynamic characteristics of the process, under the optimal conditions of XU, XS and XC. The UAE of phytochemicals from persimmon peel followed pseudo second order kinetic model and the extraction process was endothermic in nature.
Collapse
Affiliation(s)
- Souvik Giri
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Gvs Bhagya Raj
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary.
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
4
|
Khan S, Abdo AAA, Shu Y, Zhang Z, Liang T. The Extraction and Impact of Essential Oils on Bioactive Films and Food Preservation, with Emphasis on Antioxidant and Antibacterial Activities-A Review. Foods 2023; 12:4169. [PMID: 38002226 PMCID: PMC10670266 DOI: 10.3390/foods12224169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Essential oils, consisting of volatile compounds, are derived from various plant parts and possess antibacterial and antioxidant properties. Certain essential oils are utilized for medicinal purposes and can serve as natural preservatives in food products, replacing synthetic ones. This review describes how essential oils can promote the performance of bioactive films and preserve food through their antioxidant and antibacterial properties. Further, this article emphasizes the antibacterial efficacy of essential oil composite films for food preservation and analyzes their manufacturing processes. These films could be an attractive delivery strategy for improving phenolic stability in foods and the shelf-life of consumable food items. Moreover, this article presents an overview of current knowledge of the extraction of essential oils, their effects on bioactive films and food preservation, as well as the benefits and drawbacks of using them to preserve food products.
Collapse
Affiliation(s)
- Sohail Khan
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Abdullah A. A. Abdo
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Tieqiang Liang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| |
Collapse
|
5
|
Benítez-Correa E, Bastías-Montes JM, Acuña-Nelson S, Muñoz-Fariña O. Effect of choline chloride-based deep eutectic solvents on polyphenols extraction from cocoa ( Theobroma cacao L.) bean shells and antioxidant activity of extracts. Curr Res Food Sci 2023; 7:100614. [PMID: 37840695 PMCID: PMC10570950 DOI: 10.1016/j.crfs.2023.100614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
The effective extraction of natural compounds from cocoa bean shells using deep eutectic solvents could contribute to the sustainable valorization of this waste material. The objective of this study was to: (1) analyze the extraction kinetics of polyphenols released from cocoa (Theobroma cacao L.) bean shells (CBS) by the solid-liquid extraction method using choline chloride-based deep eutectic solvents (ChCl-DES) and their aqueous solutions; (2) investigate the effect of choline chloride-based deep eutectic solvents (ChCl-DES) aqueous solutions on in-vitro antioxidant capacity and the main individual compounds of the extracts. ChCl-DES were prepared with lactic acid, glycerol, and ethylene glycol in a 1:2 ratio. Aqueous solutions (30%, 40%, and 50% water) to obtain solvents with different physicochemical properties were performed. The total phenolic content (TPC) was determined by the Folin-Ciocalteu method. The solution of Fick's law model for plate geometry particles was applied to fit the experimental data and calculate the effective diffusivity coefficient (De). The antioxidant capacity of the extracts was analyzed by a combination of 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) free radical scavenging capacity and ferric-reducing antioxidant power (FRAP) assays. The main bioactive compounds were quantified by high-performance liquid chromatography. The results showed that the type of hydrogen bond donor influences the total phenolic content, antioxidant activity and the main individual compounds in the extracts. Moreover, the washing/diffusion mechanism adequately depicts the extraction kinetics data for total phenolic content. However, the influence of an additional mechanism that enhanced the extraction capacity of deep eutectic solvents compared with organic solvent was confirmed.
Collapse
Affiliation(s)
- Elaine Benítez-Correa
- Food Engineering Department, Universidad Del Bío-Bío, Chillán, Chile
- Food Industry Research Institute, La Habana, Cuba
| | | | | | - Ociel Muñoz-Fariña
- Institute of Food Science and Technology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
6
|
Wang W, Ding F, Qu H, Gong X. Mechanism modeling and application of Salvia miltiorrhiza percolation process. Sci Rep 2023; 13:8311. [PMID: 37221365 DOI: 10.1038/s41598-023-35529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Percolation is a common extraction method of food processing industry. In this work, taking the percolation extraction of salvianolic acid B from Salvia miltiorrhiza (Salviae Miltiorrhizae Radix et Rhizoma) as an example, the percolation mechanism model was derived. The volume partition coefficient was calculated according to the impregnation. experiment. The bed layer voidage was measured by single-factor percolation experiment and the internal mass transfer coefficient was calculated by the parameters obtained by fitting the impregnation kinetic model. After screening, the Wilson and Geankoplis, and Koch and Brady formulas were used to calculate the external mass transfer coefficient and the axial diffusion coefficient, respectively. After substituting each parameter into the model, the process of percolation of Salvia miltiorrhiza was predicted, and the coefficient of determination R2 was all greater than 0.94. Sensitivity analysis was used to show that all the parameters studied had a significant impact on the prediction effect. Based on the model, the design space including the range of raw material properties and process parameters was established and successfully verified. At the same time, the model was applied to the quantitative extraction and endpoint prediction of the percolation process.
Collapse
Affiliation(s)
- Wanying Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Feng Ding
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321016, China.
| |
Collapse
|
7
|
Deng Y, Yang X, Yan T, Xu W, Li J, Niu R, Zhao R, Wang H, Wang H, Chen T, Guo M, Wang W, Liu D. Ultrasound-induced cell disintegration and its ultrastructure characterization for the valorisation of Chlorella pyrenoidosa protein. BIORESOURCE TECHNOLOGY 2023; 381:129046. [PMID: 37044154 DOI: 10.1016/j.biortech.2023.129046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
Chlorella pyrenoidosa (CP) has great potential for feeding future demands in food, environment, energy, and pharmaceuticals. To achieve this goal, the exploitation of emerging efficient technique such as ultrasound-assisted extraction (UAE) for CP nutrient enrichment is crucial. Here, UAE is deployed for high-efficient CP protein (CPP) valorisation. Compared to conventional solvent extraction (CSE), remarkable mass transfer enhancements with 9-time protein yields and 3-time extraction rate are achieved by ultrasonic cavitation in UAE, indicating UAE can drastically shift intracellular nutrients including proteins and pigments to solvent. Cell morphology and ultrastructure show the different responses of cell wall and membrane, indicating that the cell membrane may play a role in the extraction process, based on which the extremely-low efficiency of CSE and high efficiency of UAE are highlighted. This study provides a solution for future food crisis by extracting CPP and may open a new discussion field in ultrasonic extraction.
Collapse
Affiliation(s)
- Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Han Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hao Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tingting Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
8
|
Gasparetto H, Carolina Ferreira Piazzi Fuhr A, Paula Gonçalves Salau N. Forecasting soybean oil extraction using cyclopentyl methyl ether through soft computing models with a density functional theory study. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Marillán C, Uquiche E. Extraction of bioactive compounds from Leptocarpha rivularis stems by three-stage sequential supercritical extraction in fixed bed extractor using CO2 and ethanol-modified CO2. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
A Comprehensive Overview of Tomato Processing By-Product Valorization by Conventional Methods versus Emerging Technologies. Foods 2022; 12:foods12010166. [PMID: 36613382 PMCID: PMC9818577 DOI: 10.3390/foods12010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
The tomato processing industry can be considered one of the most widespread food manufacturing industries all over the world, annually generating considerable quantities of residue and determining disposal issues associated not only with the wasting of invaluable resources but also with the rise of significant environmental burdens. In this regard, previous studies have widely ascertained that tomato by-products are still rich in valuable compounds, which, once recovered, could be utilized in different industrial sectors. Currently, conventional solvent extraction is the most widely used method for the recovery of these compounds from tomato pomace. Nevertheless, several well-known drawbacks derive from this process, including the use of large quantities of solvents and the difficulties of utilizing the residual biomass. To overcome these limitations, the recent advances in extraction techniques, including the modification of the process configuration and the use of complementary novel methods to modify or destroy vegetable cells, have greatly and effectively influenced the recovery of different compounds from plant matrices. This review contributes a comprehensive overview on the valorization of tomato processing by-products with a specific focus on the use of "green technologies", including high-pressure homogenization (HPH), pulsed electric fields (PEF), supercritical fluid (SFE-CO2), ultrasounds (UAE), and microwaves (MAE), suitable to enhancing the extractability of target compounds while reducing the solvent requirement and shortening the extraction time. The effects of conventional processes and the application of green technologies are critically analyzed, and their effectiveness on the recovery of lycopene, polyphenols, cutin, pectin, oil, and proteins from tomato residues is discussed, focusing on their strengths, drawbacks, and critical factors that contribute to maximizing the extraction yields of the target compounds. Moreover, to follow the "near zero discharge concept", the utilization of a cascade approach to recover different valuable compounds and the exploitation of the residual biomass for biogas generation are also pointed out.
Collapse
|
11
|
Hosseini SZ, Abbasi Souraki B. Simulation of mass transfer during sucrose extraction from sugar beet using a combined analytical and semi-empirical model. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2150618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- S. Z. Hosseini
- Chemical Engineering Department, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Behrooz Abbasi Souraki
- Chemical Engineering Department, Faculty of Engineering, University of Guilan, Rasht, Iran
| |
Collapse
|
12
|
Lianza M, Marincich L, Antognoni F. The Greening of Anthocyanins: Eco-Friendly Techniques for Their Recovery from Agri-Food By-Products. Antioxidants (Basel) 2022; 11:2169. [PMID: 36358541 PMCID: PMC9717736 DOI: 10.3390/antiox11112169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
In recent years, several steps forward have been made toward a more sustainable approach for the extraction of bioactive compounds from plant materials based on the application of green extraction principles. It is currently recognized that waste and by-products deriving from agriculture and food industries still contain a wide array of high value-added substances, which can be re-used to obtain new products with various applications in the food, supplement, pharmaceutical, and cosmetic industries. Anthocyanins are a class of these valuable metabolites; they confer the red, violet, and blue color to fruits and vegetables, and scientific evidence has accumulated over the last few decades to support their beneficial effects on human health, in great part deriving from their powerful antioxidant capacity. This review provides a general overview of the most recent green procedures that have been applied for the recovery of anthocyanins from plant-derived wastes and by-products. The most widely used green solvents and the main sustainable techniques utilized for recovering this class of flavonoids from various matrices are discussed, together with the variables that mainly impact the extraction yield.
Collapse
Affiliation(s)
| | | | - Fabiana Antognoni
- Department for Life Quality Studies, Rimini Campus, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
13
|
Tungmunnithum D, Garros L, Drouet S, Cruz-Martins N, Hano C. Extraction Kinetics and Reaction Rates of Sacred Lotus Stamen Tea Infusion-Derived Flavonoids in Relation with Its Antioxidant Capacity. PLANTS 2022; 11:plants11172234. [PMID: 36079616 PMCID: PMC9459831 DOI: 10.3390/plants11172234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Stamen tea from Nelumbo nucifera Gaertn. (or the so-called sacred lotus) is widely consumed, and its flavonoids provide various human health benefits. The method used for tea preparation for consumption, namely the infusion time, may affect the levels of extractable flavonoids, ultimately affecting their biological effects. To date, there is no report on this critical information. Thus, this study aims to determine the kinetics of solid liquid extraction of flavonoid from sacred lotus stamen using the traditional method of preparing sacred lotus stamen tea. Phytochemical composition was also analyzed using high-performance liquid chromatography (HPLC). The antioxidant potential of stamen tea was also determined. The results indicated that the infusion time critically affects the concentrations of flavonoids and the antioxidant capacity of sacred lotus stamen tea, with a minimum infusion time of 5–12 min being required to release the different flavonoids from the tea. The extraction was modeled using second order kinetics. The rate of release was investigated by the glycosylation pattern, with flavonoid diglycosides, e.g., rutin and Kae-3-Rob, being released faster than flavonoid monoglycosides. The antioxidant activity was also highly correlated with flavonoid levels during infusion. Taken together, data obtained here underline that, among others, the infusion time should be considered for the experimental design of future epidemiological studies and/or clinical trials to reach the highest health benefits.
Collapse
Affiliation(s)
- Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Department of Chemical Biology, Eure et Loir Campus, University of Orleans, 28000 Chartres, France
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
- Correspondence: (D.T.); (C.H.)
| | - Laurine Garros
- Department of Chemical Biology, Eure et Loir Campus, University of Orleans, 28000 Chartres, France
| | - Samantha Drouet
- Department of Chemical Biology, Eure et Loir Campus, University of Orleans, 28000 Chartres, France
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-319 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Christophe Hano
- Department of Chemical Biology, Eure et Loir Campus, University of Orleans, 28000 Chartres, France
- Le Studium Institue for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
- Correspondence: (D.T.); (C.H.)
| |
Collapse
|
14
|
Xavier L, Pisani J, Meghirditchian G, de Mattos R, Vieitez I, Barrenengoa M, Zecchi B. Extraction of phenolic compounds from apple pomace, process modeling and antioxidant potential evaluation of extracts. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Apple pomace, a byproduct of juice and cider production, is rich in phenolic compounds with antioxidant activity. This work studies the kinetics of solid–liquid extraction of phenolic compounds from apple pomace. Extraction kinetics were determined using a 50% water–ethanol solution and fitted to a phenomenological model. Equilibrium isotherms were also modeled. Effective diffusion coefficient values between 1.85x10−11 and 7.37x10−11 m2/s were found. External mass transfer resistance showed negligible results. The best yields (43.94%) were obtained at 60 °C with a solid–liquid ratio of 1:10 g/mL. Those conditions resulted in a total phenolic content of 9.95 mg gallic acid equivalents (GAE)/g apple pomace d.b., antioxidant FRAP activity of 5.07 mmol ascorbic acid equivalents (AAE)/100 g apple pomace d.b. and 3.74 mmol trolox equivalents (TRE)/100 g apple pomace d.b. based on a DPPH assay. Apple pomace extract efficiently stabilized sunflower oil and may represent a natural alternative to synthetic antioxidants.
Collapse
Affiliation(s)
- Lucía Xavier
- Instituto de Ingeniería Química, Facultad de Ingeniería , Universidad de la República , Julio Herrera y Reissig 565, 11300 , Montevideo , Uruguay
| | - Justina Pisani
- Instituto de Ingeniería Química, Facultad de Ingeniería , Universidad de la República , Julio Herrera y Reissig 565, 11300 , Montevideo , Uruguay
| | - Gustavo Meghirditchian
- Instituto de Ingeniería Química, Facultad de Ingeniería , Universidad de la República , Julio Herrera y Reissig 565, 11300 , Montevideo , Uruguay
| | - Rodolfo de Mattos
- Instituto de Ingeniería Química, Facultad de Ingeniería , Universidad de la República , Julio Herrera y Reissig 565, 11300 , Montevideo , Uruguay
| | - Ignacio Vieitez
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Química , Universidad de la República , Avenida General Flores 2124, 11800 , Montevideo , Uruguay
| | - Manuel Barrenengoa
- Instituto de Ingeniería Química, Facultad de Ingeniería , Universidad de la República , Julio Herrera y Reissig 565, 11300 , Montevideo , Uruguay
| | - Berta Zecchi
- Instituto de Ingeniería Química, Facultad de Ingeniería , Universidad de la República , Julio Herrera y Reissig 565, 11300 , Montevideo , Uruguay
| |
Collapse
|
15
|
Motlagh SR, Khezri R, Harun R, Awang Biak DR, Hussain SA, Chee CY, Kheawhom S. Kinetic and thermodynamic studies of eicosapentaenoic acid extraction from Nannochloropsis oceanica using tetramethyl ammonium chloride and microwave irradiation. PLoS One 2022; 17:e0267626. [PMID: 35511804 PMCID: PMC9070882 DOI: 10.1371/journal.pone.0267626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Microalgae have garnered widespread attention as a sustainable source of pharmaceuticals and nutraceuticals. As for extracting lipids from microalgae, the combination of microwave-assisted extraction (MAE) and ionic liquids (IL) is shown to be promising. However, such an undertaking usually requires a large consumption of expensive ILs. This study innovatively employs tetramethyl ammonium chloride ([TMAm][Cl]) as an additive in water medium to associate with microwave-assisted ionic liquid extraction (MAILE) in extracting lipids from Nannochloropsis oceanica (N. oceanica) microalgae. In extraction, knowledge of reaction kinetics is crucial since it provides the foundation for developing, controlling, and improving the processes of extraction. Herein, using MAILE, lipids are extracted from N. oceanica microalgae and transesterified to eicosapentaenoic acid (EPA). Mass transfer kinetics are, therefore, investigated using the first and second-order rate law and Patricelli’s model. In the development of models, the influence of temperature (60–90°C) and reaction time (1–25 min) on EPA extraction is empirically evaluated. From the thermodynamic study, the positive values of ΔS (+0.10 kJ mol-1K-1) and ΔH (+32.50 kJ mol-1) and the negative value of ΔG (-1.68 to -4.75 kJ mol-1) confirm that this process is endothermic in nature, irreversible and spontaneous. MAILE proves to be a promising approach for the extraction of high-quality EPAs. Due to its low cost, rapid operation, and environmental friendliness, it is seen to be suitable for both pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Shiva Rezaei Motlagh
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Ramin Khezri
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Razif Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, UPM, Serdang, Selangor, Malaysia
- * E-mail: (RH); (SK)
| | - Dayang Radiah Awang Biak
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Siti Aslina Hussain
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Ching Yern Chee
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Soorathep Kheawhom
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Research Unit of Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, Thailand
- Bio-Circular-Green-Economy Technology & Engineering Center (BCGeTEC), Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (RH); (SK)
| |
Collapse
|
16
|
Implementation of the moving control volume and filling front concepts in modelling solid-liquid extraction of vegetable oil from porous and non-porous solids in a fixed bed. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Xiang B, Zhou X, Qin D, Li C, Xi J. Infrared assisted extraction of bioactive compounds from plant materials: Current research and future prospect. Food Chem 2022; 371:131192. [PMID: 34592627 DOI: 10.1016/j.foodchem.2021.131192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 01/24/2023]
Abstract
The extraction of bioactive compounds from plant materials has attracted much attention due to their potential therapeutic effects. This article reviews the basic principles, characteristics, and recent applications of infrared assisted extraction (IAE) of bioactive compounds from plant materials. The advantages and disadvantages of IAE are considered, and operation mode and technological improvements, processes, solvents used and other future developments are identified. The review indicated that IAE was a simple, rapid, and cost-effective technique with the capacity for industrial scale application. Future research should focus on energy consumption reduction, green chemistry extraction processes, simplified operation steps, intelligent extraction process, and the establishment of kinetic and thermodynamic models. This article provides a comprehensive understanding of the principles and applications of IAE for the preparation of bioactive compounds, which will be of benefit to researchers and users of the technology.
Collapse
Affiliation(s)
- Bing Xiang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Zhou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Danyang Qin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chenyue Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Xi
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
18
|
Cansu Ü, Boran G. Kinetic evaluation of gelatin extraction from chicken skin and the effect of some extraction parameters. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ümran Cansu
- Technical Sciences Vocational School Harran University Şanlıurfa Turkey
| | - Gökhan Boran
- Department of Food Engineering Van Yüzüncü Yıl University Van Turkey
| |
Collapse
|
19
|
Xiang B, Zhou X, Qin D, Xi J. Vesicle-enhanced liquid-phase pulsed discharge extraction of polyphenols from green tea leaves. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Kinetics and mechanistic models of solid-liquid extraction of pectin using advance green techniques- a review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Blahovec J, Kouřím P, Lebovka N. Volumetric Shrinkage and Poisson ‘s Ratio of Carrot Treated by Pulse Electric Fields. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02711-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Wang W, Yan Z, Yao H, Li P, Peng W, Su W, Wang Y. Extraction and purification of pedunculoside from the dried barks of Ilex rotunda using crystallization combined with polyamide column chromatography. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1788595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Weiyue Wang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zenghao Yan
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangzhou, PR China
| | - Peibo Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Peng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yonggang Wang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Kinetic Study on Chlorophyll and Antioxidant Activity from Polyscias fruticosa (L.) Harms Leaves via Microwave-Assisted Extraction. Molecules 2021; 26:molecules26123761. [PMID: 34205529 PMCID: PMC8235075 DOI: 10.3390/molecules26123761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Polyscias fruticosa (L.) leaves contain significant bioactive compounds with high antioxidant activity such as chlorophylls, total polyphenols, etc. but these have still been underutilized. In this study, the kinetics of chlorophyll and antioxidant activity extraction from P. fruticosa leaves by microwave-assisted extraction (MAE) were investigated. Microwave power was 300, 450, or 600 (W); the ratio of material/solvent varied from 1:40 to 1:80 (g/mL). In this study, the second-order kinetic model successfully predicted the change of chlorophyll and antioxidant activity during MAE. The increase of microwave power or/and the solvent amount increased saturated extraction efficiency and the extraction rate constant. However, the saturated concentration of chlorophyll and antioxidant activity increased with the increment of microwave power and the decrease in solvent amount.
Collapse
|
24
|
Identification of phenolic compounds in Australian grown dragon fruits by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
25
|
Rayo-Mendez LM, Koshima CC, Pessoa Filho PA, Tadini CC. Recovery of non-starch polysaccharides from ripe banana (Musa cavendishii). J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Papachristou I, Akaberi S, Silve A, Navarro-López E, Wüstner R, Leber K, Nazarova N, Müller G, Frey W. Analysis of the lipid extraction performance in a cascade process for Scenedesmus almeriensis biorefinery. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:20. [PMID: 33446259 PMCID: PMC7807813 DOI: 10.1186/s13068-020-01870-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microalgae have attracted considerable interest due to their ability to produce a wide range of valuable compounds. Pulsed Electric Fields (PEF) has been demonstrated to effectively disrupt the microalgae cells and facilitate intracellular extraction. To increase the commercial viability of microalgae, the entire biomass should be exploited with different products extracted and valorized according to the biorefinery scheme. However, demonstrations of multiple component extraction in series are very limited in literature. This study aimed to develop an effective lipid extraction protocol from wet Scenedesmus almeriensis after PEF-treatment with 1.5 MJ·kgDW-1. A cascade process, i.e., the valorization of several products in row, was tested with firstly the collection of the released carbohydrates in the water fraction, then protein enzymatic hydrolysis and finally lipid extraction. Biomass processed with high pressure homogenization (HPH) on parallel, served as benchmark. RESULTS Lipid extraction with ethanol:hexane (1:0.41 vol/vol) offered the highest yields from the different protocols tested. PEF-treatment promoted extraction with almost 70% of total lipids extracted against 43% from untreated biomass. An incubation step after PEF-treatment, further improved the yields, up to 83% of total lipids. Increasing the solvent volume by factor 2 offered no improvement. In comparison, extraction with two other systems utilizing only ethanol at room temperature or elevated at 60 °C were ineffective with less than 30% of total lipids extracted. Regarding cascade extraction, carbohydrate release after PEF was detected albeit in low concentrations. PEF-treated samples displayed slightly better kinetics during the enzymatic protein hydrolysis compared to untreated or HPH-treated biomass. The yields from a subsequent lipid extraction were not affected after PEF but were significantly increased for untreated samples (66% of total lipids), while HPH displayed the lowest yields (~ 49% of total lipids). CONCLUSIONS PEF-treatment successfully promoted lipid extraction from S. almeriensis but only in combination with a polar:neutral co-solvent (ethanol:hexane). After enzymatic protein hydrolysis in cascade processing; however, untreated biomass displayed equal lipid yields due to the disruptive effect of the proteolytic enzymes. Therefore, the positive impact of PEF in this scheme is limited on the improved reaction kinetics exhibited during the enzymatic hydrolysis step.
Collapse
Affiliation(s)
- I Papachristou
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany.
| | - S Akaberi
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| | - A Silve
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| | - E Navarro-López
- Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | - R Wüstner
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| | - K Leber
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| | - N Nazarova
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| | - G Müller
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| | - W Frey
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Bldg 630, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
27
|
Koturevic B, Adnadjevic B, Jovanovic J. Comparative kinetic analysis of total hypericin extraction from Hypericum perforatum flowers carried out under simultaneous external physical field and cooling reaction system operational conditions. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Guo Y, Li Y, Li Z, Yan W, Chen P, Yao S. Extraction assisted by far infrared radiation and hot air circulation with deep eutectic solvent for bioactive polysaccharides from Poria cocos (Schw.) wolf. GREEN CHEMISTRY 2021. [DOI: 10.1039/d1gc01773j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, a new ternary choline chloride-deep eutectic solvent was used to efficiently extract bioactive polysaccharides from poria cocos assisted by the new tool of the far infrared radiation (FIR) together with hot air circulation (HAC).
Collapse
Affiliation(s)
- Yingying Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zicheng Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wentao Yan
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Peng Chen
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
29
|
|
30
|
Psarrou I, Oreopoulou A, Tsimogiannis D, Oreopoulou V. Extraction Kinetics of Phenolic Antioxidants from the Hydro Distillation Residues of Rosemary and Effect of Pretreatment and Extraction Parameters. Molecules 2020; 25:E4520. [PMID: 33023142 PMCID: PMC7582955 DOI: 10.3390/molecules25194520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 02/02/2023] Open
Abstract
Rosemary residue, remaining after the distillation of essential oil, is currently unexploited, while it is a source of phenolic antioxidant components. This raw material was used for the extraction of phenolic compounds by aqueous ethanol or acetone in a continuously stirred reactor. The experimental results were fitted with a two-stage diffusion model. The highest extraction rates, total phenolic content (TPC) recovery, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity were obtained by acetone 60% and ethanol 60%. Grinding of the raw material enhanced the extraction rate and increased TPC yield and antioxidant capacity as the particle size decreased. Pre-treatment by maceration in water (4 h) dissolved a high amount of TPC and shortened the extraction time, while the combination with the pulsed electric field process did not provide further improvement. The use of ultrasound increased the efficiency of the extraction.
Collapse
Affiliation(s)
- Irini Psarrou
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou, 15780 Athens, Greece; (I.P.); (A.O.); (D.T.)
| | - Antigoni Oreopoulou
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou, 15780 Athens, Greece; (I.P.); (A.O.); (D.T.)
- Vioryl, Agricultural and Chemical Industry, Research S.A., 28th km National Road Athens-Lamia, Afidnes, 19014 Attiki, Greece
| | - Dimitrios Tsimogiannis
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou, 15780 Athens, Greece; (I.P.); (A.O.); (D.T.)
- NFA (Natural Food Additives), Laboratory of Natural Extracts Development, 6 Dios st, Tavros, 17778 Athens, Greece
| | - Vassiliki Oreopoulou
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou, Zografou, 15780 Athens, Greece; (I.P.); (A.O.); (D.T.)
| |
Collapse
|
31
|
Oreopoulou A, Goussias G, Tsimogiannis D, Oreopoulou V. Hydro-alcoholic extraction kinetics of phenolics from oregano: Optimization of the extraction parameters. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Shaheen S, Grigorakis S, Halahlah A, Loupassaki S, Makris DP. Extractor dimensions affect optimization of laboratory-scale batch solid-liquid extraction of polyphenols from plant material: potato peels as a case study. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1805438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sherif Shaheen
- Food Quality and Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (M.A.I.Ch), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), Chania, Greece
| | - Spyros Grigorakis
- Food Quality and Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (M.A.I.Ch), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), Chania, Greece
| | - Abedalghani Halahlah
- Food Quality and Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (M.A.I.Ch), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), Chania, Greece
| | - Sofia Loupassaki
- Food Quality and Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (M.A.I.Ch), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), Chania, Greece
| | - Dimitris P. Makris
- Green Processes and Biorefinery Group, School of Agricultural Sciences, University of Thessaly, Karditsa, Greece
| |
Collapse
|
33
|
Silva JPP, Bolanho BC, Stevanato N, Massa TB, Silva C. Ultrasound‐assisted extraction of red beet pigments (
Beta vulgaris
L.): Influence of operational parameters and kinetic modeling. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | - Natália Stevanato
- Departamento de Engenharia Química Universidade Estadual de Maringá Maringá Brasil
| | - Thainara Bovo Massa
- Departamento de Engenharia Química Universidade Estadual de Maringá Maringá Brasil
| | - Camila Silva
- Departamento de Tecnologia Universidade Estadual de Maringá Umuarama Brasil
- Departamento de Engenharia Química Universidade Estadual de Maringá Maringá Brasil
| |
Collapse
|
34
|
Reungoat V, Gaudin M, Flourat AL, Isidore E, Mouterde LM, Allais F, Ducatel H, Ioannou I. Optimization of an ethanol/water-based sinapine extraction from mustard bran using Response Surface Methodology. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Donsì F, Velikov KP. Mechanical cell disruption of mustard bran suspensions for improved dispersion properties and protein release. Food Funct 2020; 11:6273-6284. [PMID: 32602518 DOI: 10.1039/d0fo00852d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mustard bran, a by-product of mustard production, is still rich in valuable compounds. The high-pressure homogenization treatment was tested as a mechanical cell disruption (MCD) technique to unlock valuable intracellular compounds. An aqueous suspension of mustard bran was treated by shear mixing, followed by high-pressure homogenization at different pressure levels (50-150 MPa) and number of passes (1-10), and using different homogenizing systems. The moderate-intensity treatment (up to 100 MPa and 3 passes) can deliver significant changes in the mustard bran suspension, inducing (a) a more homogeneous and smooth appearance due to the disruption of individual cells, (b) a better structuring ability in the suspension, through the increase in viscosity and storage and loss moduli G' and G'', as well as (c) a remarkable enhancement of protein release, up to 72% of total proteins. The controlling factor in the extent of MCD was found to be the specific energy transferred to the mustard bran suspensions, whereas no significant differences were recorded when varying the homogenization system. The MCD process of mustard bran, based on its physical treatments using only water as a suspension medium, can be regarded as a safe, clean and environmentally friendly technology platform, which contributes to reaching the zero-waste concept by transforming agro-food by-products into value-added ingredients, with enhanced functionality and bioactive content.
Collapse
Affiliation(s)
- Francesco Donsì
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | | |
Collapse
|
36
|
Tanaydın MK, Demirkıran N. Kinetic models for the extraction of copper by Acorga M5640 after leaching of malachite ore in perchloric acid solutions and the stripping of copper from loaded organic phase. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00032-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Dorneles MS, Noreña CPZ. Microwave‐assisted extraction of bioactive compounds from
Araucaria angustifolia
bracts followed by encapsulation. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mariane Santos Dorneles
- Institute of Food Science and Technology Federal University of Rio Grande do Sul Porto Alegre Brazil
| | | |
Collapse
|
38
|
Dorneles MS, Noreña CPZ. Extraction of bioactive compounds from
Araucaria angustifolia
bracts by microwave‐assisted extraction. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mariane S. Dorneles
- Institute of Food Science and Technology (ICTA/UFRGS) Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Caciano P. Z. Noreña
- Institute of Food Science and Technology (ICTA/UFRGS) Federal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
39
|
Wang Y, Wang X, Zhang K, Zhang X, Li S, Li Y, Fan W, Leng F, Yang M, Chen J. Extraction kinetics, thermodynamics, rheological properties and anti-BVDV activity of the hot water assisted extraction of Glycyrrhiza polysaccharide. Food Funct 2020; 11:4067-4080. [PMID: 32329761 DOI: 10.1039/d0fo00608d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The extraction kinetics and thermodynamic parameters of Glycyrrhiza polysaccharide (GP) were studied, and its rheological properties and antiviral activity were evaluated. The results showed that the extraction process could be fitted to Fick's second law of diffusion. The optimum concentration (97.62 mg mL-1) was obtained at a solid-liquid ratio of 1 : 15, (g mL-1), an extraction time of 120 min and an extraction temperature of 80 °C. The whole extraction process was spontaneous and endothermic. GP was shown to be an acid glycoprotein with a complex structure using high performance liquid chromatography (HPLC), circular dichroism (CD) and Fourier-transform infrared spectroscopy (FT-IR). A study of its rheological properties showed that GP has the characteristics of a typical non-Newtonian pseudoplastic fluid and that its viscosity could be significantly affected by temperature, pH and the presence of other ions. Branched and soft fiber structures with irregular molecular aggregation were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Moreover, GP showed good inhibitory activity against bovine viral diarrhea virus (BVDV) via the regulation of the relative expression levels of the IRF-1 and IRF-3 genes in MDBK cells. This activity was found to be dependent on the physicochemical and structural properties of GP. These findings imply that GP can be considered as a natural source of active material for the prevention of viral disease.
Collapse
Affiliation(s)
- Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zghaibi N, Omar R, Mustapa Kamal SM, Awang Biak DR, Harun R. Kinetics Study of Microwave-Assisted Brine Extraction of Lipid from the Microalgae Nannochloropsis sp .. Molecules 2020; 25:molecules25040784. [PMID: 32059440 PMCID: PMC7070645 DOI: 10.3390/molecules25040784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 11/26/2022] Open
Abstract
The kinetics of lipid extraction utilizing microwave-assisted extraction (MAE) from Nannochloropsis sp. microalgae were studied using a low cost and green solvent, namely brine (NaCl) solution. The kinetic modelling of the lipid extraction was performed to evaluate the mechanism of the lipid mass transfer using different extraction models, including Fick’s Law, First and Second-order Rate Law and the Patricelli mathematical model. The Patricelli mathematical model described the kinetics of lipid extraction well, with the highest average values of determination coefficient (R2 ≥ 0.952) and the lowest average values of mean relative percentage deviation (MRPD ≤ 8.666%). The lipid analysis indicated a positive influence of the microwave temperature and time on the quantity and quality of extracted lipids. SEM analysis of spent microalgae clearly shows an increase in the distorted cell with increase microwave temperature and time, which could be directly correlated to the mechanism of the MAE-brine technique.
Collapse
Affiliation(s)
- Nour Zghaibi
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (D.R.A.B.); (R.H.)
- Correspondence: (N.Z.); (R.O.); Tel.: +60-3-97696290 (R.O.)
| | - Rozita Omar
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (D.R.A.B.); (R.H.)
- Correspondence: (N.Z.); (R.O.); Tel.: +60-3-97696290 (R.O.)
| | - Siti Mazlina Mustapa Kamal
- Department of Process and Food Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Dayang Radiah Awang Biak
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (D.R.A.B.); (R.H.)
| | - Razif Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (D.R.A.B.); (R.H.)
| |
Collapse
|
41
|
Vieira PG, de Melo MM, Şen A, Simões MM, Portugal I, Pereira H, Silva CM. Quercus cerris extracts obtained by distinct separation methods and solvents: Total and friedelin extraction yields, and chemical similarity analysis by multidimensional scaling. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Jurić S, Ferrari G, Velikov KP, Donsì F. High-pressure homogenization treatment to recover bioactive compounds from tomato peels. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
A Mechanistic Model of Mass Transfer in the Extraction of Bioactive Compounds from Intact Sorghum Pericarp. Processes (Basel) 2019. [DOI: 10.3390/pr7110837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The extraction of phytochemical compounds from intact red sorghum grains was developed as an alternative process for producing bioactive material in the pharmaceutical industry. A mechanistic model is needed to better understand the process and enable predictive simulations for designing commercial-scale extraction systems. This paper presents a mathematical model for predicting phytochemical concentrations in the solvent and inside the pericarp of the grain at different positions during the extraction. The model is based on the mass transfer mechanism from inside the pericarp to its solid surface by diffusion, and then from the surface to a solvent during the extraction of bioactive compounds. It was numerically solved while using finite-difference approximation. The parameters considered were effective diffusivity inside the pericarp (Dep), mass transfer coefficient from the pericarp surface to the solvent (kc), and distribution coefficient (H). The model simulates the extraction performance, including the yield and bioactive compounds’ concentrations in the extract and inside the pericarp at various positions and times. A sensitivity analysis of the changes in each involved parameter provided sufficient information for increasing the performance of the model. A validation test that compared the results of the simulation with those of established analytical solutions showed that the model has high accuracy. Hence, the model can be applied in quantitative evaluations to improve productivity in the pharmaceutical industry.
Collapse
|
44
|
Bengardino M, Fernandez M, Nutter J, Jagus R, Agüero M. Recovery of bioactive compounds from beet leaves through simultaneous extraction: Modelling and process optimization. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Amrouche S, Mohellebi F, Derriche R. Extraction of phenolic compounds from algerian Inula viscosa (L.) Aiton leaves: kinetic study and modeling. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1675700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sara Amrouche
- Laboratoire de valorisation des énergies fossiles, Ecole Nationale Polytechnique, Alger, Algérie
| | - Faroudja Mohellebi
- Laboratoire de valorisation des énergies fossiles, Ecole Nationale Polytechnique, Alger, Algérie
| | - Ratiba Derriche
- Laboratoire de valorisation des énergies fossiles, Ecole Nationale Polytechnique, Alger, Algérie
| |
Collapse
|
46
|
Ferreira RM, Ramalho Ribeiro A, Patinha C, Silva AMS, Cardoso SM, Costa R. Water Extraction Kinetics of Bioactive Compounds of Fucus vesiculosus. Molecules 2019; 24:E3408. [PMID: 31546839 PMCID: PMC6766934 DOI: 10.3390/molecules24183408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022] Open
Abstract
Brown macroalgae, particularly those from Fucus genus, are a rich and balanced source of bioactive nutrients and phytochemicals, such as dietary fibres (fucoidans, laminarins, and/or alginates), phlorotannins, and fucoxanthin, and some minerals, such as iodine, which have been demonstrated to possess numerous health-promoting properties. In fact, aqueous extracts of Fucus vesiculosus have been used as food supplements due to its rich content in bioactive compounds, though no study has been published on the optimization of this operation. Therefore, this study aimed to evaluate the impact of different extraction temperatures (25 °C, 50 °C, 75 °C, 100 °C, and 120 °C) and times (5 min, 1 h, 2 h, and 4 h) on the recovery of those bioactive compounds. The temperature was observed to positively influence the extraction of crude mass and of fucose polysaccharides only at 75 °C and above, and of iodine extraction at 50 °C and above. At these temperatures, time also showed to increase yields. Yields of crude extract, fucose, and iodine were successfully mathematically modelled with a power law, and its maximum yields were obtained at the highest temperature studied (120 °C) and longest extraction time (4 h). Iodine yield at these conditions provided extracts with relevant content to contribute to the recommended daily ingestion. Phlorotannins were significantly recovered at 120 °C though evidence of degradation was observed during time.
Collapse
Affiliation(s)
- Ricardo M Ferreira
- QOPNA and LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Ramalho Ribeiro
- Polytechnic Institute of Coimbra, College of Agriculture, Research Centre for Natural Resources, Environment and Society (CERNAS), Bencanta, 3045-601 Coimbra, Portugal
| | - Carla Patinha
- GEOBIOTEC, Department of Geoscience, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- QOPNA and LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M Cardoso
- QOPNA and LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Rui Costa
- Polytechnic Institute of Coimbra, College of Agriculture, Research Centre for Natural Resources, Environment and Society (CERNAS), Bencanta, 3045-601 Coimbra, Portugal.
| |
Collapse
|
47
|
Kadiri O, Gbadamosi SO, Akanbi CT. Extraction kinetics, modelling and optimization of phenolic antioxidants from sweet potato peel vis-a-vis RSM, ANN-GA and application in functional noodles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00249-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Ultrasound-assisted extraction of biologically active compounds and their successive concentration by using membrane processes. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Baskararaj S, Theivendren P, Palanisamy P, Kannan S, Pavadai P, Arunachalam S, Sankaranarayanan M, Mohan UP, Ramasamy L, Kunjiappan S. Optimization of bioactive compounds extraction assisted by microwave parameters from Kappaphycus alvarezii using RSM and ANFIS modeling. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00198-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Massa TB, Stevanato N, Cardozo‐Filho L, da Silva C. Pumpkin (
Cucurbita maxima
) by‐products: Obtaining seed oil enriched with active compounds from the peel by ultrasonic‐assisted extraction. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Thainara Bovo Massa
- Departamento de Engenharia QuímicaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | - Natália Stevanato
- Departamento de Engenharia QuímicaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
| | | | - Camila da Silva
- Departamento de Engenharia QuímicaUniversidade Estadual de Maringá Maringá Puerto Rico Brazil
- Departamento de TecnologiaUniversidade Estadual de Maringá Umuarama Brazil
| |
Collapse
|