1
|
Wang L, Hamouda HI, Dong Y, Jiang H, Quan Y, Chen Y, Liu Y, Wang J, Balah MA, Mao X. High-level and reusable preparation of sulforaphane by yeast cells expressing myrosinase. Food Chem X 2023; 18:100668. [PMID: 37091516 PMCID: PMC10114154 DOI: 10.1016/j.fochx.2023.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
Myrosinase is a key tool for the fast and efficient preparation of sulforaphane which is one of the prominent natural ingredients found in brassicaceous vegetables. Here, the glucoraphanin-hydrolyzing activity of a Yarrowia lipolytica 20-8 harboring myrosinase reached 73.28 U/g dry cell weight, indicating that it had a potential application in sulforaphane preparation from glucoraphanin. An efficient and reusable process for sulforaphane preparation via myrosinase produced by Y. lipolytica 20-8 was constructed. In detail, as high as 10.32 mg sulforaphane could be produced from 1 g broccoli seed under the reaction of 40 U yeast whole-cell catalyst within 15 min with the conversion efficiency of 99.86%. Moreover, when the yeast whole-cell catalyst was reused 7 and 10 times, as high as 92.53% and 87.56% of sulforaphene yield of the initial level could be retained, respectively. Therefore, this yeast whole-cell is a potent biocatalyst for the efficient and reusable preparation of sulforaphane.
Collapse
Affiliation(s)
- Lili Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Hamed I. Hamouda
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
- Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City 11727, Cairo, Egypt
| | - Yueyang Dong
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Hong Jiang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
- Corresponding author at: Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Yongyi Quan
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Yimiao Chen
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Yan Liu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiaqi Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| | - Mohamed A. Balah
- Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266003, China
| |
Collapse
|
2
|
Wang L, Jiang H, Qiu Y, Dong Y, Hamouda HI, Balah MA, Mao X. Biochemical Characterization of a Novel Myrosinase Rmyr from Rahnella inusitata for High-Level Preparation of Sulforaphene and Sulforaphane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2303-2311. [PMID: 35112855 DOI: 10.1021/acs.jafc.1c07646] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Myrosinase is a biotechnological tool for the preparation of sulforaphane and sulforaphene with a variety of excellent biological activities. In this study, a gene encoding the novel glycoside hydrolase family 3 (GH3) myrosinase Rmyr from Rahnella inusitata was heterologously expressed in Escherichia coli BL21 (DE3). The purified Rmyr shows the highest activity at 40 °C and pH 7.0; meanwhile, its half-life at 30 °C reaches 12 days, indicating its excellent stability. Its sinigrin-, glucoraphenin-, and glucoraphanin-hydrolyzing activities were 12.73, 4.81, and 6.99 U/mg, respectively. Rmyr could efficiently degrade the radish seed-derived glucoraphenin and the broccoli seed-derived glucoraphanin into sulforaphene and sulforaphane within 10 min with the highest yields of 5.07 mg/g radish seeds and 9.56 mg/g broccoli seeds, respectively. The highest conversion efficiencies of sulforaphane from glucoraphanin and sulforaphene from glucoraphenin reached up to 92.48 and 97.84%, respectively. Therefore, Rmyr is a promising and potent biocatalyst for efficient and large-scale preparation of sulforaphane and sulforaphene.
Collapse
Affiliation(s)
- Lili Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yanjun Qiu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yueyang Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hamed I Hamouda
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mohamed A Balah
- Soil Chemistry and Physics Department, Desert Research Center, Cairo 11753, Egypt
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
3
|
Wang L, Jiang H, Liang X, Zhou W, Qiu Y, Xue C, Sun J, Mao X. Preparation of Sulforaphene from Radish Seed Extracts with Recombinant Food-Grade Yarrowia lipolytica Harboring High Myrosinase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5363-5371. [PMID: 33929187 DOI: 10.1021/acs.jafc.1c01400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sulforaphene prepared from glucoraphenin by myrosinase is one of the main active ingredients of radish, which has various biological activities and brilliant potential for food and pharmaceutical applications. In this paper, a recombinant food-grade yeast transformant 20-8 with high-level myrosinase activity was constructed by over-expressing a myrosinase gene from Arabidopsis thaliana in Yarrowia lipolytica. The highest myrosinase activity produced by the transformant 20-8 reached 44.84 U/g dry cell weight when it was cultivated in a 10 L fermentor within 108 h. Under the optimal reaction conditions, 6.1 mg of sulforaphene was yielded from 1 g of radish seeds under the catalysis of the crude myrosinase preparation (4.95 U) at room temperature within 1.5 h. What is more is that when the whole yeast cells harboring myrosinase activity were reused 10 times, the sulforaphene yield still reached 92.53% of the initial level. Therefore, this efficient approach has broad application prospects in recyclable and large-scale preparation of sulforaphene.
Collapse
Affiliation(s)
- Lili Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Shandong Engineering Research Center for Biological Manufacturing of Marine Food, Qingdao 266003, China
| | - Xingxing Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wenting Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yanjun Qiu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Shandong Engineering Research Center for Biological Manufacturing of Marine Food, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Shandong Engineering Research Center for Biological Manufacturing of Marine Food, Qingdao 266003, China
| |
Collapse
|