1
|
Dong C, Hu C, Jiang Y, Hui K, Jiang X. Case report: Envafolimab combined with Endostar in the treatment of advanced non-small cell lung cancer with malignant pleural effusion. Front Oncol 2024; 14:1368059. [PMID: 38638859 PMCID: PMC11024318 DOI: 10.3389/fonc.2024.1368059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Malignant pleural effusion (MPE) is one of the common complications of lung cancer. The quality of life and prognoses for MPE patients are significantly compromised. Controlling the production of MPE can relieve patients' symptoms, improve their quality of life, and prolong their survival. This article presents a case of advanced non-small cell lung cancer (NSCLC) with MPE and negative driver genes. The patient received envafolimab and Endostar in combination, resulting in a complete reduction of MPE and durable clinical benefits. The exploratory use of this treatment method improved the quality of life of this patient and has the potential to prolong the survival of this patient.
Collapse
Affiliation(s)
| | | | | | - Kaiyuan Hui
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| | | |
Collapse
|
2
|
Marqués M, Pont M, Hidalgo I, Sorolla MA, Parisi E, Salud A, Sorolla A, Porcel JM. MicroRNAs Present in Malignant Pleural Fluid Increase the Migration of Normal Mesothelial Cells In Vitro and May Help Discriminate between Benign and Malignant Effusions. Int J Mol Sci 2023; 24:14022. [PMID: 37762343 PMCID: PMC10531386 DOI: 10.3390/ijms241814022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The sensitivity of pleural fluid (PF) analyses for the diagnosis of malignant pleural effusions (MPEs) is low to moderate. Knowledge about the pathobiology and molecular characteristics of this condition is limited. In this study, the crosstalk between stromal cells and tumor cells was investigated in vitro in order to reveal factors that are present in PF which can mediate MPE formation and aid in discriminating between benign and malignant etiologies. Eighteen PF samples, in different proportions, were exposed in vitro to mesothelial MeT-5A cells to determine the biological effects on these cells. Treatment of normal mesothelial MeT-5A cells with malignant PF increased cell viability, proliferation, and migration, and activated different survival-related signaling pathways. We identified differentially expressed miRNAs in PF samples that could be responsible for these changes. Consistently, bioinformatics analysis revealed an enrichment of the discovered miRNAs in migration-related processes. Notably, the abundance of three miRNAs (miR-141-3p, miR-203a-3, and miR-200c-3p) correctly classified MPEs with false-negative cytological examination results, indicating the potential of these molecules for improving diagnosis. Malignant PF produces phenotypic and functional changes in normal mesothelial cells. These changes are partly mediated by certain miRNAs, which, in turn, could serve to differentiate malignant from benign effusions.
Collapse
Affiliation(s)
- Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Mariona Pont
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Iván Hidalgo
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital, Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
| | - José M. Porcel
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain; (M.M.); (M.P.); (I.H.); (M.A.S.); (E.P.); (A.S.); (A.S.)
- Pleural Medicine and Clinical Ultrasound Unit, Department of Internal Medicine, Arnau de Vilanova University Hospital, Avda Alcalde Rovira Roure 80, 25198 Lleida, Spain
| |
Collapse
|
3
|
Wong T, Fuld AD, Feller-Kopman DJ. Malignant Pleural Effusions in the Era of Immunotherapy and Antiangiogenic Therapy. Semin Respir Crit Care Med 2023. [PMID: 37308114 DOI: 10.1055/s-0043-1769092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Malignant pleural effusions (MPE) have historically been associated with a poor prognosis, and patients often require a series of invasive procedures and hospitalizations that significantly reduce quality of life at the terminus of life. However, advances in the management of MPE have coincided with the era of immunotherapies, and to a lesser extent, antiangiogenic therapies for the treatment of lung cancer. Landmark studies have shown these drugs to improve overall survival and progression-free survival in patients with lung cancer, but a paucity of phase III trial data exists for the impact of immune checkpoint inhibitors (ICI) on lung cancers associated with MPE. This review will focus on the leading studies investigating the impact of ICI and antiangiogenic therapies in patients with lung cancer and MPE. The diagnostic and prognostic values of vascular endothelial growth factor and endostatin expression levels in malignancy will also be discussed. These advancements are changing the paradigm of MPE management from palliation to treatment for the first time since 1767 when MPE was first reported. The future holds the promise of durable response and extended survival in patients with MPE.
Collapse
Affiliation(s)
- Terrence Wong
- Department of Medicine, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire
- Division of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Alexander D Fuld
- Department of Medicine and Medical Education, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire
- Department of Medical Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - David J Feller-Kopman
- Department of Medicine, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire
- Division of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
4
|
Qureshi M, Thapa B, Muruganandan S. A Narrative Review-Management of Malignant Pleural Effusion Related to Malignant Pleural Mesothelioma. Heart Lung Circ 2023; 32:587-595. [PMID: 36925448 DOI: 10.1016/j.hlc.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 03/17/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive, almost universally fatal cancer with limited therapeutic options. Despite efforts, a real breakthrough in treatment and outcomes has been elusive. Pleural effusion with significant breathlessness and pain is the most typical presentation of individuals with MPM. Although thoracentesis provides relief of breathlessness, most such pleural effusions recur rapidly, and a definitive procedure is often required to prevent a recurrence. Unfortunately, the optimal treatment modality for individuals with recurrent MPM-related effusion is unclear, and considerable variation exists in practice. In addition, non-expandable lung is common in pleural effusions due to MPM and makes effective palliation of symptoms more difficult. This review delves into the latest advances in the available management options (both surgical and non-surgical) for dealing with pleural effusion and non-expandable lung related to MPM. We discuss factors that determine the choice of definitive procedures that need to be tailored to the individual patient.
Collapse
Affiliation(s)
- Maryum Qureshi
- Department of Thoracic Surgery, Northern Hospital, Melbourne, Vic, Australia.
| | - Bibhusal Thapa
- Department of Thoracic Surgery, Northern Hospital, Melbourne, Vic, Australia
| | - Sanjeevan Muruganandan
- Department of Respiratory Medicine, Northern Hospital, Melbourne, Vic, Australia; School of Medicine, Health Sciences, Dentistry, University of Melbourne, Vic, Australia
| |
Collapse
|
5
|
Dick IM, Lee YCG, Cheah HM, Miranda A, Robinson BWS, Creaney J. Profile of soluble factors in pleural effusions predict prognosis in mesothelioma. Cancer Biomark 2021; 33:159-169. [PMID: 34487023 PMCID: PMC8925107 DOI: 10.3233/cbm-210280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND: Pleural mesothelioma is a deadly asbestos induced cancer. Less than 10% of mesothelioma patients survive 5 years post diagnosis. However survival can range from a few months to a number of years. Accurate prediction of survival is important for patients to plan for their remaining life, and for clinicians to determine appropriate therapy. One unusual feature of mesothelioma is that patients frequently present with tumor-associated pleural effusions early in the course of the disease. OBJECTIVE: To study whether cells and molecules present in pleural effusions provide prognostic information for mesothelioma. METHODS: We profiled the cellular constituents and concentrations of 40 cytokines, chemokines and cellular factors (collectively “soluble factors”) involved in inflammatory and immune signalling pathways in pleural effusion samples from 50 mesothelioma patients. Associations with survival were evaluated by Cox proportional hazards regression methods. Results for the two soluble factors most significantly and independently associated with survival were validated in an independent set of samples (n= 51) using a separate assay system. RESULTS: Survival analysis revealed that IL8, IL2Ra (CD25) and PF4 were independent determinants of a more negative prognosis in mesothelioma patients, independent of other known prognostic factors. Lipocalin2 and IL4 were associated with better prognosis. CONCLUSIONS: This study demonstrates that pleural effusions rich in a range of soluble factors are associated with poor prognosis. These findings will enhance our ability to prognosticate outcomes in mesothelioma patients.
Collapse
Affiliation(s)
- I M Dick
- National Centre for Asbestos Related Disease, University of Western Australia, Nedlands, WA, Australia.,Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia.,Institute of Respiratory Health, University of Western Australia, Nedlands, WA, Australia
| | - Y C G Lee
- Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia.,Institute of Respiratory Health, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - H M Cheah
- Institute of Respiratory Health, University of Western Australia, Nedlands, WA, Australia
| | - A Miranda
- National Centre for Asbestos Related Disease, University of Western Australia, Nedlands, WA, Australia
| | - B W S Robinson
- National Centre for Asbestos Related Disease, University of Western Australia, Nedlands, WA, Australia.,Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - J Creaney
- National Centre for Asbestos Related Disease, University of Western Australia, Nedlands, WA, Australia.,Faculty of Health and Medical Science, University of Western Australia, Nedlands, WA, Australia.,Institute of Respiratory Health, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
6
|
Zhao L, Giannou AD, Xu Y, Shiri AM, Liebold I, Steglich B, Bedke T, Zhang T, Lücke J, Scognamiglio P, Kempski J, Woestemeier A, Chen J, Agalioti T, Zazara DE, Lindner D, Janning M, Hennigs JK, Jagirdar RM, Kotsiou OS, Zarogiannis SG, Kobayashi Y, Izbicki JR, Ghosh S, Rothlin CV, Bosurgi L, Huber S, Gagliani N. Efferocytosis fuels malignant pleural effusion through TIMP1. SCIENCE ADVANCES 2021; 7:7/33/eabd6734. [PMID: 34389533 PMCID: PMC8363144 DOI: 10.1126/sciadv.abd6734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 06/24/2021] [Indexed: 06/03/2023]
Abstract
Malignant pleural effusion (MPE) results from the capacity of several human cancers to metastasize to the pleural cavity. No effective treatments are currently available, reflecting our insufficient understanding of the basic mechanisms leading to MPE progression. Here, we found that efferocytosis through the receptor tyrosine kinases AXL and MERTK led to the production of interleukin-10 (IL-10) by four distinct pleural cavity macrophage (Mφ) subpopulations characterized by different metabolic states and cell chemotaxis properties. In turn, IL-10 acts on dendritic cells (DCs) inducing the production of tissue inhibitor of metalloproteinases 1 (TIMP1). Genetic ablation of Axl and Mertk in Mφs or IL-10 receptor in DCs or Timp1 substantially reduced MPE progression. Our results delineate an inflammatory cascade-from the clearance of apoptotic cells by Mφs, to production of IL-10, to induction of TIMP1 in DCs-that facilitates MPE progression. This inflammatory cascade offers a series of therapeutic targets for MPE.
Collapse
Affiliation(s)
- Lilan Zhao
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General Thoracic Surgery, Fujian Provincial Hospital, Fujian Medical University, 350003 Fuzhou, People's Republic of China
| | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Yang Xu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Imke Liebold
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Babett Steglich
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pasquale Scognamiglio
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jing Chen
- Department of Pharmacy, Dong Fang Hospital (900 Hospital of the Joint Logistics Team), School of Medicine, Xiamen University, 350025 Fuzhou, People's Republic of China
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitra E Zazara
- Center for Obstetrics and Pediatrics, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Diana Lindner
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 33 280, 69120 Heidelberg, Germany
| | - Melanie Janning
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim and Medical Faculty Mannheim, University of Heidelberg Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany
| | - Jan K Hennigs
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Ourania S Kotsiou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Yasushi Kobayashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jacob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lidia Bosurgi
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Protozoa Immunology, Bernard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
7
|
Kishimoto T, Kojima Y, Fujimoto N. Significance of secretory leukocyte peptidase inhibitor in pleural fluid for the diagnosis of benign asbestos pleural effusion. Sci Rep 2021; 11:12965. [PMID: 34155270 PMCID: PMC8217519 DOI: 10.1038/s41598-021-92289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
Secretory leukocyte peptidase inhibitor (SLPI) is a biomarker present in the respiratory tract that protects against tissue destruction and aids in wound healing. We examined whether SLPI in pleural effusion can be used to distinguish benign asbestos pleural effusion (BAPE) from early-stage malignant pleural mesothelioma (MPM) and other diseases. We measured the levels of SLPI, hyaluronic acid (HA), soluble mesothelin-related peptides (SMRP), CCL2, galectin-3, and CYFRA21-1 in 51 patients with BAPE, 37 patients with early-stage MPM, 77 patients with pleural effusions due to non-small-cell lung cancer (LCa), and 74 patients with other pleural effusions. SLPI levels in the pleural fluid of patients with BAPE were significantly lower than those in patients with MPM, LCa, and other pleural effusions (p < 0.0001). The area under the curve (AUC) for SLPI’s ability to distinguish BAPE from MPM was 0.902, with a sensitivity of 82.4% and a specificity of 86.5%. This AUC was not only favourable but was better than the AUC for the ability of CYFRA21-1 to distinguish BAPE (0.853). The combination of SLPI and CYFRA21-1 achieved an AUC of 0.965 for the differentiation between BAPE and MPM. Pleural fluid SLPI as well as CYFRA21-1 and HA is useful as a biomarker to diagnose BAPE, which needs to be distinguished from early-stage MPM.
Collapse
Affiliation(s)
- Takumi Kishimoto
- Department of Medicine, Okayama Rosai Hospital, 1-10-25 Chikko Midorimachi, Minami-ku, Okayama, 702-8055, Japan.
| | - Yoko Kojima
- Department of Medicine, Okayama Rosai Hospital, 1-10-25 Chikko Midorimachi, Minami-ku, Okayama, 702-8055, Japan
| | - Nobukazu Fujimoto
- Department of Medicine, Okayama Rosai Hospital, 1-10-25 Chikko Midorimachi, Minami-ku, Okayama, 702-8055, Japan
| |
Collapse
|
8
|
Mierzejewski M, Paplinska-Goryca M, Korczynski P, Krenke R. Primary human mesothelial cell culture in the evaluation of the inflammatory response to different sclerosing agents used for pleurodesis. Physiol Rep 2021; 9:e14846. [PMID: 33932124 PMCID: PMC8087983 DOI: 10.14814/phy2.14846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 11/24/2022] Open
Abstract
The mechanisms of chemical pleurodesis are still not fully explained. We aimed to evaluate the feasibility of using primary biopsy‐derived human mesothelial cells to establish an in vitro culture and to assess the response of pleural mesothelial cells to different sclerosing agents. Talc, povidone‐iodine, doxycycline, and TGF‐β were used at different doses to stimulate pleural mesothelial cells. After 6 and 24 h, mRNA expression of interleukin (IL)‐1β, IL‐6, IL‐8, TGF‐β, MCP‐1, IL‐17A, and MMP9 was measured in cultured cells, and the protein level of IL‐1β, IL‐6, and IL‐8 was measured in the culture supernatant. The most pronounced response was observed after talc exposure. It was expressed as an increase in IL‐1β concentration in culture supernatant after 24 h of higher talc dose stimulation compared to 6 h of stimulation (17.14 pg/ml [11.96–33.32 pg/ml] vs. 1.84 pg/ml [1.81–1.90 pg/ml], p = 0.02). We showed that culture pleural mesothelial cells isolated from pleura biopsy specimens is feasible. Inflammatory responses of mesothelial cells to different sclerosants were highly variable with no consistent pattern of mesothelium reaction neither in terms of different sclerosing agents nor in the time of the most significant reaction. We demonstrated that pro‐inflammatory mesothelial response includes an increase in IL‐1β mRNA expression and protein production. This may suggest the role of IL‐1β in the formation and maintenance of the inflammatory response during pleurodesis.
Collapse
Affiliation(s)
- Michal Mierzejewski
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Paplinska-Goryca
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Korczynski
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Principe N, Kidman J, Lake RA, Lesterhuis WJ, Nowak AK, McDonnell AM, Chee J. Malignant Pleural Effusions-A Window Into Local Anti-Tumor T Cell Immunity? Front Oncol 2021; 11:672747. [PMID: 33987104 PMCID: PMC8111299 DOI: 10.3389/fonc.2021.672747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
The success of immunotherapy that targets inhibitory T cell receptors for the treatment of multiple cancers has seen the anti-tumor immune response re-emerge as a promising biomarker of response to therapy. Longitudinal characterization of T cells in the tumor microenvironment (TME) helps us understand how to promote effective anti-tumor immunity. However, serial analyses at the tumor site are rarely feasible in clinical practice. Malignant pleural effusions (MPE) associated with thoracic cancers are an abnormal accumulation of fluid in the pleural space that is routinely drained for patient symptom control. This fluid contains tumor cells and immune cells, including lymphocytes, macrophages and dendritic cells, providing a window into the local tumor microenvironment. Recurrent MPE is common, and provides an opportunity for longitudinal analysis of the tumor site in a clinical setting. Here, we review the phenotype of MPE-derived T cells, comparing them to tumor and blood T cells. We discuss the benefits and limitations of their use as potential dynamic biomarkers of response to therapy.
Collapse
Affiliation(s)
- Nicola Principe
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Joel Kidman
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Willem Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | | | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
10
|
Fitzgerald DB, Muruganandan S, Tsim S, Ip H, Asciak R, Walker S, Uribe Becerra JP, Majid A, Ahmed L, Rahman NM, Maskell NA, Blyth KG, Lee YCG. Intrapleural Fibrinolytics and Deoxyribonuclease for Treatment of Indwelling Pleural Catheter-Related Pleural Infection: A Multi-Center Observational Study. Respiration 2021; 100:452-460. [PMID: 33784710 DOI: 10.1159/000514643] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Indwelling pleural catheters (IPC) are increasingly used for management of recurrent (especially malignant) effusions. Pleural infection associated with IPC use remains a concern. Intrapleural therapy with tissue plasminogen activator (tPA) and deoxyribonuclease (DNase) significantly reduces surgical referrals in non-IPC pleural infection, but data on its use in IPC-related pleural infection are scarce. OBJECTIVE To assess the safety and efficacy of intrapleural tPA and DNase in IPC-related pleural infection. METHODS Patients with IPC-related pleural infection who received intrapleural tPA/DNase in five Australian and UK centers were identified from prospective databases. Outcomes on feasibility of intrapleural tPA/DNase delivery, its efficacy and safety were recorded. RESULTS Thirty-nine IPC-related pleural infections (predominantly Staphylococcus aureus and gram-negative organisms) were treated in 38 patients; 87% had malignant effusions. In total, 195 doses (median 6 [IQR = 3-6]/patient) of tPA (2.5 mg-10 mg) and DNase (5 mg) were instilled. Most (94%) doses were delivered via IPCs using local protocols for non-IPC pleural infections. The mean volume of pleural fluid drained during the first 72 h of treatment was 3,073 (SD = 1,685) mL. Most (82%) patients were successfully treated and survived to hospital discharge without surgery; 7 required additional chest tubes or therapeutic aspiration. Three patients required thoracoscopic surgery. Pleurodesis developed post-infection in 23/32 of successfully treated patients. No major morbidity/mortality was associated with tPA/DNase. Four patients received blood transfusions; none had systemic or significant pleural bleeding. CONCLUSION Treatment of IPC-related pleural infection with intrapleural tPA/DNase instillations via the IPC appears feasible and safe, usually without additional drainage procedures or surgery. Pleurodesis post-infection is common.
Collapse
Affiliation(s)
- Deirdre B Fitzgerald
- Sir Charles Gairdner Hospital, Perth, Washington, Australia.,Institute for Respiratory Health, Perth, Washington, Australia.,University of Western Australia, Perth, Washington, Australia
| | - Sanjeevan Muruganandan
- Sir Charles Gairdner Hospital, Perth, Washington, Australia.,University of Western Australia, Perth, Washington, Australia.,Northern Hospital, Epping, Victoria, Australia
| | - Selina Tsim
- Queen Elizabeth University Hospital, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Hugh Ip
- Guy's and St. Thomas' Hospital, London, United Kingdom
| | - Rachelle Asciak
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Steven Walker
- Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Adnan Majid
- Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, Massachusetts, USA
| | - Liju Ahmed
- Guy's and St. Thomas' Hospital, London, United Kingdom
| | - Najib M Rahman
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Nick A Maskell
- Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Kevin G Blyth
- Queen Elizabeth University Hospital, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Y C Gary Lee
- Sir Charles Gairdner Hospital, Perth, Washington, Australia.,Institute for Respiratory Health, Perth, Washington, Australia.,University of Western Australia, Perth, Washington, Australia
| |
Collapse
|
11
|
Pleural Fluid Cytokine Levels at Baseline and Over Time are Associated With Time to IPC Removal: An Exploratory Study. J Bronchology Interv Pulmonol 2020; 27:4-13. [PMID: 31373905 DOI: 10.1097/lbr.0000000000000602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The behavior of pleural fluid cytokine (PFCs) levels and their association with pleurodesis after indwelling pleural catheter (IPC) placement is unknown. OBJECTIVE A prospective exploratory study was conducted to obtain preliminary data on PFC levels after IPC placement. METHODS The PFC panel consisted of 4 cytokines [interleukin -8 (IL-8), vascular endothelial growth factor, total (but not activated) transforming growth factor betas, and basic fibroblast growth factor], measured across 5 time points (T0: insertion; T1: 24 to 48 h; T2: 72 to 96 h; T3: 1 wk; and T4: 2 wk). Profile plots were used to identify patterns of change of PFC levels. Correlation matrices for each PFC over time were computed, and area under the curve (AUC) categories were used to compare the cumulative incidence of IPC removal. Auto pleurodesis was defined as elective catheter removal because of decreased drainage within 90 days of insertion. RESULTS A total of 22 patients provided complete data. Except for IL-8, the majority of PFCs demonstrated strong positive correlations across measurement time points. Patients with high AUCs for IL-8, basic fibroblast growth factor, and vascular endothelial growth factor had a higher cumulative incidence of IPC removal by 90 days than did patients with low AUCs. CONCLUSION This is the first study to evaluate longitudinal changes of pleural cytokine levels with respect to the likelihood of IPC removal and provide early evidence that the cytokine profile may be associated with the outcome of pleurodesis induced by IPCs. However, this is an exploratory study and further studies are needed to assess if these findings can be validated in further studies.
Collapse
|
12
|
Ruan X, Sun Y, Wang W, Ye J, Zhang D, Gong Z, Yang M. Multiplexed molecular profiling of lung cancer with malignant pleural effusion using next generation sequencing in Chinese patients. Oncol Lett 2020; 19:3495-3505. [PMID: 32269623 PMCID: PMC7115151 DOI: 10.3892/ol.2020.11446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common type of cancer and the leading cause of cancer-associated death worldwide. Malignant pleural effusion (MPE), which is observed in ~50% of advanced non-small cell lung cancer (NSCLC) cases, and most frequently in lung adenocarcinoma, is a common complication of stage III-IV NSCLC, and it can be used to predict a poor prognosis. In the present study, multiple oncogene mutations were detected, including 17 genes closely associated with initiation of advanced lung cancer, in 108 MPE samples using next generation sequencing (NGS). The NGS data of the present study had broader coverage, deeper sequencing depth and higher capture efficiency compared with NGS findings of previous studies on MPE. In the present study, using NGS, it was demonstrated that 93 patients (86%) harbored EGFR mutations and 62 patients possessed mutations in EGFR exons 18-21, which are targets of available treatment agents. EGFR L858R and exon 19 indel mutations were the most frequently observed alterations, with frequencies of 31 and 25%, respectively. In 1 patient, an EGFR amplification was identified and 6 patients possessed a T790M mutation. ALK + EML4 gene fusions were identified in 6 patients, a ROS1 + CD74 gene fusion was detected in 1 patient and 10 patients possessed a BIM (also known as BCL2L11) 2,903-bp intron deletion. In 4 patients, significant KRAS mutations (G12D, G12S, G13C and A146T) were observed, which are associated with resistance to afatinib, icotinib, erlotinib and gefitinib. There were 83 patients with ERBB2 mutations, but only two of these mutations were targets of available treatments. The results of the present study indicate that MPE is a reliable specimen for NGS based detection of somatic mutations.
Collapse
Affiliation(s)
- Xingya Ruan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yonghua Sun
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Wei Wang
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Jianwei Ye
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Daoyun Zhang
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Ziying Gong
- Shanghai YunYing Medical Technology Co., Ltd., Shanghai 201600, P.R. China
| | - Mingxia Yang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
13
|
Chu GJ, van Zandwijk N, Rasko JEJ. The Immune Microenvironment in Mesothelioma: Mechanisms of Resistance to Immunotherapy. Front Oncol 2019; 9:1366. [PMID: 31867277 PMCID: PMC6908501 DOI: 10.3389/fonc.2019.01366] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Although mesothelioma is the consequence of a protracted immune response to asbestos fibers and characterized by a clear immune infiltrate, novel immunotherapy approaches show less convincing results as compared to those seen in melanoma and non-small cell lung cancer. The immune suppressive microenvironment in mesothelioma is likely contributing to this therapy resistance. Therefore, it is important to explore the characteristics of the tumor microenvironment for explanations for this recalcitrant behavior. This review describes the stromal, cytokine, metabolic, and cellular milieu of mesothelioma, and attempts to make connection with the outcome of immunotherapy trials.
Collapse
Affiliation(s)
- Gerard J. Chu
- Gene and Stem Cell Therapy Program Centenary Institute, University of Sydney, Department of Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Nico van Zandwijk
- Sydney Medical School, Sydney Local Health District (Concord Repatriation General Hospital), University of Sydney, Sydney, NSW, Australia
| | - John E. J. Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, University of Sydney, Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Mierzejewski M, Korczynski P, Krenke R, Janssen JP. Chemical pleurodesis - a review of mechanisms involved in pleural space obliteration. Respir Res 2019; 20:247. [PMID: 31699094 PMCID: PMC6836467 DOI: 10.1186/s12931-019-1204-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Chemical pleurodesis is a therapeutic procedure applied to create the symphysis between the parietal and visceral pleura by intrapleural administration of various chemical agents (e.g. talk, tetracycline, iodopovidone, etc.). The two major clinical conditions treated with chemical pleurodesis are recurrent pleural effusion (PE) and recurrent spontaneous pneumothorax. Although the history of chemical pleurodesis began over a century ago, detailed data on the mechanisms of action of sclerosing agents are highly incomplete. The following article aims to present the state of knowledge on this subject.It is believed that mesothelial cells are the main structural axis of pleurodesis. In response to sclerosing agents they secrete a variety of mediators including chemokines such as interleukin 8 (IL-8) and monocyte chemoattractant protein (MCP-1), as well as growth factors - vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF) and transforming growth factor- β (TGF-β). Numerous data suggest that intact mesothelial cells and the above cytokines play a crucial role in the initiation and maintenance of different pathways of pleural inflammation and pleural space obliteration.It seems that the process of pleurodesis is largely nonspecific to the sclerosant and involves the same ultimate pathways including activation of pleural cells, coagulation cascade, fibrin chain formation, fibroblast proliferation and production of collagen and extracellular matrix components. Of these processes, the coagulation cascade with decreased fibrinolytic activity and increased fibrinogenesis probably plays a pivotal role, at least during the early response to sclerosant administration.A better understanding of various pathways involved in pleurodesis may be a prerequisite for more effective and safe use of various sclerosants and for the development of new, perhaps more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Michal Mierzejewski
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Korczynski
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland.
| | - Julius P Janssen
- Department of Pulmonary Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Predicting Patient Outcome in the Evolving Field of Malignant Pleural Effusion. J Bronchology Interv Pulmonol 2019; 27:1-3. [DOI: 10.1097/lbr.0000000000000630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Molano Franco D, Arevalo‐Rodriguez I, Roqué i Figuls M, Montero Oleas NG, Nuvials X, Zamora J. Plasma interleukin-6 concentration for the diagnosis of sepsis in critically ill adults. Cochrane Database Syst Rev 2019; 4:CD011811. [PMID: 31038735 PMCID: PMC6490303 DOI: 10.1002/14651858.cd011811.pub2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The definition of sepsis has evolved over time, along with the clinical and scientific knowledge behind it. For years, sepsis was defined as a systemic inflammatory response syndrome (SIRS) in the presence of a documented or suspected infection. At present, sepsis is defined as a life-threatening organ dysfunction resulting from a dysregulated host response to infection. Even though sepsis is one of the leading causes of mortality in critically ill patients, and the World Health Organization (WHO) recognizes it as a healthcare priority, it still lacks an accurate diagnostic test. Determining the accuracy of interleukin-6 (IL-6) concentrations in plasma, which is proposed as a new biomarker for the diagnosis of sepsis, might be helpful to provide adequate and timely management of critically ill patients, and thus reduce the morbidity and mortality associated with this condition. OBJECTIVES To determine the diagnostic accuracy of plasma interleukin-6 (IL-6) concentration for the diagnosis of bacterial sepsis in critically ill adults. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, LILACS, and Web of Science on 25 January 2019. We screened references in the included studies to identify additional studies. We did not apply any language restriction to the electronic searches. SELECTION CRITERIA We included diagnostic accuracy studies enrolling critically ill adults aged 18 years or older under suspicion of sepsis during their hospitalization, where IL-6 concentrations were evaluated by serological measurement. DATA COLLECTION AND ANALYSIS Two review authors independently screened the references to identify relevant studies and extracted data. We assessed the methodological quality of studies using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. We estimated a summary receiver operating characteristic (SROC) curve by fitting a hierarchical summary ROC (HSROC) non-linear mixed model. We explored sources of heterogeneity using the HSROC model parameters. We conducted all analyses in the SAS statistical software package and R software. MAIN RESULTS We included 23 studies (n = 4192) assessing the accuracy of IL-6 for the diagnosis of sepsis in critically ill adults. Twenty studies that were available as conference proceedings only are awaiting classification. The included participants were heterogeneous in terms of their distribution of age, gender, main diagnosis, setting, country, positivity threshold, sepsis criteria, year of publication, and origin of infection, among other factors. Prevalence of sepsis greatly varied across studies, ranging from 12% to 78%. We considered all studies to be at high risk of bias due to issues related to the index test domain in QUADAS-2. The SROC curve showed a great dispersion in individual studies accuracy estimates (21 studies, 3650 adult patients), therefore the considerable heterogeneity in the collected data prevented us from calculating formal accuracy estimates. Using a fixed prevalence of sepsis of 50% and a fixed specificity of 74%, we found a sensitivity of 66% (95% confidence interval 60 to 72). If we test a cohort 1000 adult patients under suspicion of sepsis with IL-6, we will find that 330 patients would receive appropriate and timely antibiotic therapy, while 130 patients would be wrongly considered to have sepsis. In addition, 370 out of 1000 patients would avoid unnecessary antibiotic therapy, and 170 patients would have been undiagnosed of sepsis. This numerical approach should be interpreted with caution due to the limitations described above. AUTHORS' CONCLUSIONS Our evidence assessment of plasma interleukin-6 concentrations for the diagnosis of sepsis in critically ill adults reveals several limitations. High heterogeneity of collected evidence regarding the main diagnosis, setting, country, positivity threshold, sepsis criteria, year of publication, and the origin of infection, among other factors, along with the potential number of misclassifications, remain significant constraints for its implementation. The 20 conference proceedings assessed as studies awaiting classification may alter the conclusions of the review once they are fully published and evaluated. Further studies about the accuracy of interleukin-6 for the diagnosis of sepsis in adults that apply rigorous methodology for conducting diagnostic test accuracy studies are needed. The conclusions of the review will likely change once the 20 studies pending publication are fully published and included.
Collapse
Affiliation(s)
- Daniel Molano Franco
- Fundacion Universitaria de Ciencias de la Salud, Hospital de San JoséDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | - Ingrid Arevalo‐Rodriguez
- Hospital Universitario Ramón y Cajal (IRYCIS). CIBER Epidemiology and Public Health (CIBERESP)Clinical Biostatistics UnitCtra. Colmenar Km. 9,100MadridSpain28034
- Cochrane Associate Centre of MadridMadridSpain
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTECentro Asociado Cochrane de EcuadorQuitoEcuador
| | - Marta Roqué i Figuls
- CIBER Epidemiología y Salud Pública (CIBERESP)Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau)Sant Antoni Maria Claret 171Edifici Casa de ConvalescènciaBarcelonaCatalunyaSpain08041
| | - Nadia G Montero Oleas
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTECentro Asociado Cochrane de EcuadorQuitoEcuador
| | - Xavier Nuvials
- Hospital Vall d’HebronDepartment of Critical Care MedicinePasseig Vall d’Hebron 119‐129BarcelonaSpain08035
- Vall d'Hebron Institut de Recerca (VHIR)SODIR research groupBarcelonaSpain
| | - Javier Zamora
- Cochrane Associate Centre of MadridMadridSpain
- Women’s Health Research Unit, Centre for Primary Care and Public Health, Queen Mary University of LondonLondonUK
- Hospital Universitario Ramon y Cajal (IRYCIS). CIBER Epidemiology and Public Health (CIBERESP)Clinical Biostatistics UnitMadridSpain
| | | |
Collapse
|
17
|
Donnenberg AD, Luketich JD, Dhupar R, Donnenberg VS. Treatment of malignant pleural effusions: the case for localized immunotherapy. J Immunother Cancer 2019; 7:110. [PMID: 30999958 PMCID: PMC6472034 DOI: 10.1186/s40425-019-0590-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
Malignant pleural effusions (MPE) are a common terminal pathway for many cancers, with an estimated United States incidence of more than 150,000 cases per year. MPE is an aggressive disease with a uniformly fatal prognosis and a life expectancy of only 3 to 12 months. The development of an effective targeted therapy represents a pressing unmet need. This commentary focuses on how cellular and humoral components condition the pleural space as a tumor-promoting, wound-healing environment. Despite an abundance of potential antigen presenting and effector cells in the pleura, their physical isolation by the mesothelial barrier, the concentration of cytokines and chemokines driving the epithelial to mesenchymal transition (EMT) and M2 /Th-2 polarization, suppress tumor-specific immune effector responses. We argue that local immune repolarization must precede either immune checkpoint or cellular therapy to successfully eradicate pleural tumor. We further hypothesize that, because of its cellular content, a repolarized pleural space will provide an effective immune environment for generation of systemic anti-tumor response.
Collapse
Affiliation(s)
- Albert D Donnenberg
- Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Departments of Medicine and Infectious Disease and Microbiology, University of Pittsburgh, School of Medicine and Graduate School of Public Health, Hillman Cancer Center, Research Pavilion, 5117 Centre Ave, Pittsburgh, PA, 15213, USA.
| | - James D Luketich
- Department of Cardiothoracic Surgery, Division of Thoracic and Foregut Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajeev Dhupar
- Department of Cardiothoracic Surgery, Division of Thoracic and Foregut Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, Division of Thoracic and Foregut Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
- Departments of Cardiothoracic Surgery and Pharmaceutical Sciences, University of Pittsburgh, Schools of Medicine and Pharmacy, Hillman Cancer Center, Research Pavilion, 5117 Centre Ave, Suite 2.42, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
18
|
|
19
|
Popowicz ND, Lansley SM, Cheah HM, Kay ID, Carson CF, Waterer GW, Paton JC, Brown JS, Lee YCG. Human pleural fluid is a potent growth medium for Streptococcus pneumoniae. PLoS One 2017; 12:e0188833. [PMID: 29190798 PMCID: PMC5708656 DOI: 10.1371/journal.pone.0188833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/14/2017] [Indexed: 12/03/2022] Open
Abstract
Empyema is defined by the presence of bacteria and/or pus in pleural effusions. However, the biology of bacteria within human pleural fluid has not been studied. Streptococcus pneumoniae is the most common cause of pediatric and frequent cause of adult empyema. We investigated whether S. pneumoniae can proliferate within human pleural fluid and if growth is affected by the cellular content of the fluid and/or characteristics of pneumococcal surface proteins. Invasive S. pneumoniae isolates (n = 24) and reference strain recovered from human blood or empyema were inoculated (1.5×106CFU/mL) into sterile human malignant pleural fluid samples (n = 11). All S. pneumoniae (n = 25) strains proliferated rapidly, increasing by a median of 3009 (IQR 1063–9846) from baseline at 24hrs in all pleural effusions tested. Proliferation was greater than in commercial pneumococcal culture media and concentrations were maintained for 48hrs without autolysis. A similar magnitude of proliferation was observed in pleural fluid before and after removal of its cellular content, p = 0.728. S. pneumoniae (D39 strain) wild-type, and derivatives (n = 12), each with mutation(s) in a different gene required for full virulence were inoculated into human pleural fluid (n = 8). S. pneumoniae with pneumococcal surface antigen A (ΔpsaA) mutation failed to grow (2207-fold lower than wild-type), p<0.001, however growth was restored with manganese supplementation. Growth of other common respiratory pathogens (n = 14) across pleural fluid samples (n = 7) was variable and inconsistent, with some strains failing to grow. We establish for the first time that pleural fluid is a potent growth medium for S. pneumoniae and proliferation is dependent on the PsaA surface protein and manganese.
Collapse
Affiliation(s)
- Natalia D. Popowicz
- Pharmacy Department, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Division of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia
| | - Sally M. Lansley
- Institute for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia
| | - Hui M. Cheah
- Institute for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia
| | - Ian D. Kay
- Department of Microbiology and Infectious Diseases, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Christine F. Carson
- Division of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Grant W. Waterer
- Division of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Respiratory Department, Royal Perth Hospital, Perth, Western Australia, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, South Australia, Australia
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, Respiratory Medicine, University College London, London, England
| | - Y. C. Gary Lee
- Division of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia
- Respiratory Department, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
20
|
Wu DW, Chang WA, Liu KT, Yen MC, Kuo PL. Vascular endothelial growth factor and protein level in pleural effusion for differentiating malignant from benign pleural effusion. Oncol Lett 2017; 14:3657-3662. [PMID: 28927127 DOI: 10.3892/ol.2017.6631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
Pleural effusion is associated with multiple benign and malignant conditions. Currently no biomarkers differentiate malignant pleural effusion (MPE) and benign pleural effusion (BPE) sensitively and specifically. The present study identified a novel combination of biomarkers in pleural effusion for differentiating MPE from BPE by enrolling 75 patients, 34 with BPE and 41 with MPE. The levels of lactate dehydrogenase, glucose, protein, and total cell, neutrophil, monocyte and lymphocyte counts in the pleural effusion were measured. The concentrations of interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor-α, interferon γ, transforming growth factor-β1, colony stimulating factor 2, monocyte chemoattractant protein-1 and vascular endothelial growth factor (VEGF) were detected using cytometric bead arrays. Protein and VEGF levels differed significantly between patients with BPE and those with MPE. The optimal cutoff value of VEGF and protein was 214 pg/ml and 3.35 g/dl respectively, according to the receiver operating characteristic curve. A combination of VEGF >214 pg/ml and protein >3.35 g/dl in pleural effusion presented a sensitivity of 92.6% and an accuracy of 78.6% for MPE, but was not associated with a decreased survival rate. These results suggested that this novel combination strategy may provide useful biomarkers for predicting MPE and facilitating early diagnosis.
Collapse
Affiliation(s)
- Da-Wei Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Kuan-Ting Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C
| |
Collapse
|
21
|
Psallidas I, Kalomenidis I, Porcel JM, Robinson BW, Stathopoulos GT. Malignant pleural effusion: from bench to bedside. Eur Respir Rev 2017; 25:189-98. [PMID: 27246596 DOI: 10.1183/16000617.0019-2016] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/25/2016] [Indexed: 11/05/2022] Open
Abstract
Malignant pleural effusion (MPE) is a common but serious condition that is related with poor quality of life, morbidity and mortality. Its incidence and associated healthcare costs are rising and its management remains palliative, with median survival ranging from 3 to 12 months. During the last decade there has been significant progress in unravelling the pathophysiology of MPE, as well as its diagnostics, imaging, and management. Nowadays, formerly bed-ridden patients are genotyped, phenotyped, and treated on an ambulatory basis. This article attempts to provide a comprehensive overview of current advances in MPE from bench to bedside. In addition, it highlights unanswered questions in current clinical practice and suggests future directions for basic and clinical research in the field.
Collapse
Affiliation(s)
- Ioannis Psallidas
- Oxford Respiratory Trials Unit, Oxford Centre for Respiratory Medicine, Oxford University Hospitals Trust, Oxford, UK
| | - Ioannis Kalomenidis
- 1st Dept of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Jose M Porcel
- Pleural Medicine Unit, Dept of Internal Medicine, Arnau de Vilanova University Hospital, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Bruce W Robinson
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia Dept of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Achaia, Greece Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|